韦伯和哈勃确认宇宙的膨胀率

韦伯和哈勃确认宇宙的膨胀率 天文学家结合哈勃和韦伯太空望远镜的数据,对哈勃常数进行了最新测量,确认了哈勃早先的测量是正确的。研究报告发表在《The Astrophysical Journal Letters》期刊上。哈勃常数被用于衡量宇宙膨胀的速率。早期的科学家曾认为宇宙是静止的,在爱因斯坦广义相对论出现之后,这一认识发生了变化。Alexander Friedman 在 1922 年发表的一组方程式显示宇宙可能在膨胀,Georges Lemaitre 通过独立推导得出了相同结论。哈勃 (Edwin Hubble) 于 1929 年通过观测数据证实宇宙在膨胀。爱因斯坦此前也是静态宇宙的支持者,他曾试图通过引入宇宙常数修正广义相对论,但哈勃结果发表之后他据称认为这是一生中最大的错误。来源 , 频道:@kejiqu 群组:@kejiquchat

相关推荐

封面图片

破解哈勃张力:韦伯的精确测量揭示了宇宙膨胀之谜

破解哈勃张力:韦伯的精确测量揭示了宇宙膨胀之谜 NGC 5468 是一个距离地球约 1.3 亿光年的星系,这张照片结合了哈勃和詹姆斯-韦伯太空望远镜的数据。这是哈勃发现的最远的仙王座变星星系。它们是测量宇宙膨胀率的重要里程标。根据仙王座变星计算出的距离与该星系中的一颗Ia型超新星相互关联。Ia 型超新星的亮度非常高,它们被用来测量远超过蛇夫座星系范围的宇宙距离,从而将宇宙膨胀率的测量扩展到更深的空间。资料来源:NASA, ESA, CSA, STScI, Adam G. Riess (JHU, STScI)宇宙膨胀的速度,即哈勃常数,是了解宇宙演化和最终命运的基本参数之一。然而,用各种独立的距离指标测得的哈勃常数值与根据宇宙大爆炸余辉预测的值之间存在着持续的差异,这种差异被称为"哈勃张力"(Hubble Tension)。NASA/ESA/CSA 詹姆斯-韦伯太空望远镜证实,哈勃太空望远镜敏锐的目光一直都是正确的,消除了人们对哈勃测量结果的疑虑。哈勃的历史成就建造NASA/ESA 哈勃太空望远镜的科学依据之一是利用其观测能力为宇宙膨胀率提供一个精确的数值。在哈勃望远镜于 1990 年发射之前,地面望远镜的观测结果存在巨大的不确定性。根据推导出的宇宙膨胀率数值,宇宙的年龄可能在 100 亿年到 200 亿年之间。在过去的 34 年中,哈勃已经将这一测量值的精确度缩减到了百分之一以下,将两者的年龄差值缩小到了 138 亿年。哈勃通过测量被称为"仙王座变星"的重要里程碑,完善了所谓的"宇宙距离阶梯",从而实现了这一目标。然而,哈勃值与其他测量结果并不一致,其他测量结果表明宇宙在大爆炸后膨胀得更快。这些观测数据是由欧空局普朗克卫星对宇宙微波背景辐射绘制的地图得出的,宇宙微波背景辐射是宇宙从大爆炸冷却下来后结构演变的蓝图。解决这个难题的简单办法是说,也许哈勃的观测结果是错误的,因为它对深空尺度的测量出现了误差。詹姆斯-韦伯太空望远镜的出现,让天文学家能够核对哈勃的观测结果。韦伯对仙王座的红外观测结果与哈勃的光学数据一致。韦伯证实了哈勃望远镜敏锐的目光一直都是正确的,消除了对哈勃测量结果的任何疑虑。这些并排图像的中心是一种特殊的恒星,它是测量宇宙膨胀速度的里程标仙王座变星。这两幅图像的像素非常高,因为它们是一个遥远星系的放大图。每个像素代表一颗或多颗恒星。詹姆斯-韦伯太空望远镜(James Webb Space Telescope)拍摄的图像在近红外波段要比哈勃望远镜(主要是可见光-紫外光望远镜)清晰得多。通过韦伯更清晰的视野来减少杂波,仙王座就能更清晰地显现出来,消除任何潜在的混淆。韦伯望远镜被用来观测一个仙王座样本,并证实了之前哈勃观测的准确性,而哈勃观测是精确测量宇宙膨胀速度和年龄的基础。图片来源:NASA、ESA、CSA、STScI、Adam G. Riess(JHU、STScI)宇宙奥秘与理论挑战最重要的一点是,与早期宇宙的膨胀相比,近邻宇宙中发生的事情之间所谓的哈勃张力(Hubble Tension)仍然是宇宙学家耿耿于怀的难题。空间结构中可能存在一些我们还不了解的东西。解决这一差异需要新的物理学吗?还是由于确定空间膨胀率的两种不同方法之间存在测量误差?哈勃和韦伯现在已经联手进行了明确的测量,进一步证明了是其他东西而不是测量误差在影响膨胀率。宇宙观测的进展巴尔的摩约翰-霍普金斯大学的物理学家亚当-里厄斯说:"在消除了测量误差之后,剩下的就是我们误解了宇宙这一真实而令人兴奋的可能性。亚当因与他人共同发现了宇宙膨胀正在加速这一事实而获得诺贝尔奖,这一现象现在被称为'暗能量'。"作为交叉检验,2023 年的首次韦伯观测证实,哈勃对膨胀宇宙的测量是准确的。然而,为了缓解"哈勃张力",一些科学家推测,随着我们对宇宙的深入观察,测量中看不见的误差可能会增加并变得明显。特别是,恒星拥挤可能会系统地影响对更遥远恒星亮度的测量。合作验证与未来方向亚当领导的 SH0ES(用于暗能量状态方程的超新星 H0)小组利用韦伯望远镜获得了更多的观测数据,这些天体是关键的宇宙里程碑标记,被称为仙王座变星,现在可以与哈勃数据进行关联。亚当说:"我们现在已经跨越了哈勃观测到的整个范围,我们可以非常有把握地排除测量误差是哈勃张力的原因。"团队在 2023 年进行的前几次韦伯观测成功表明,哈勃在牢固确立所谓宇宙距离阶梯第一级的保真度方面走在了正确的道路上。这幅插图展示了天文学家用来计算宇宙随时间膨胀速度的三个基本步骤,这个值被称为哈勃常数。所有这些步骤都涉及建立一个强大的"宇宙距离阶梯",首先测量附近星系的精确距离,然后再测量越来越远的星系。这个"阶梯"是一系列对不同种类天体的测量结果,研究人员可以利用这些天体的固有亮度来计算距离。对于较短的距离来说,最可靠的是仙王座变星,这些恒星以可预测的速率脉动,从而显示出它们的内在亮度。最近,天文学家利用哈勃太空望远镜观测了附近大麦哲伦云中的 70 个仙王座变星,对该星系进行了最精确的距离测量。天文学家将附近的仙王座变星的测量结果与更远星系的测量结果进行比较,这些星系还包括另一个宇宙尺度被称为Ia型超新星的爆炸恒星。这些超新星比仙王座变星亮得多。天文学家用它们作为"里程标",来测量从地球到遥远星系的距离。每一个标记都建立在"阶梯"的前一步之上。通过使用不同种类的可靠"里程标"来扩展"阶梯",天文学家可以测出宇宙中非常遥远的距离。天文学家将这些距离值与整个星系的光线测量值进行比较,由于空间的均匀膨胀,星系的光线会随着距离的增加而逐渐变红。这样,天文学家就可以计算出宇宙膨胀的速度:哈勃常数。图片来源:NASA、ESA 和 A:NASA, ESA and A. Feild (STScI)宇宙距离阶梯的复杂性天文学家使用各种方法来测量宇宙中的相对距离,具体取决于所观测的天体。这些技术统称为宇宙距离阶梯每一级阶梯或测量技术都依赖于前一级阶梯的校准。但一些天文学家认为,沿着"第二梯级"向外移动,如果仙王座的测量结果随着距离的增加而变得不那么精确,那么宇宙距离的阶梯可能会变得不稳固。出现这种不准确的情况可能是因为仙王座的光线可能会与邻近恒星的光线混合在一起随着距离的增加,这种效应可能会变得更加明显,因为天空中的恒星会挤在一起,彼此变得更加难以区分。观测方面的挑战在于,过去哈勃拍摄的这些更遥远的仙王座变星的图像,在我们和它们的宿主星系之间的距离越来越远时,看起来与邻近的恒星更加拥挤和重叠,因此需要仔细考虑这种效应。中间的尘埃使可见光测量的确定性变得更加复杂。韦伯望远镜能穿过尘埃,自然地将倒灶系恒星与邻近恒星隔离开来,因为它在红外波段的视力比哈勃望远镜更敏锐。"韦伯望远镜和哈勃望远镜的结合为我们提供了两全其美的解决方案。我们发现,当我们沿着宇宙距离阶梯爬得更远时,哈勃的测量结果仍然是可靠的,"亚当说。新的韦伯观测结果包括八个 Ia 型超新星的五个宿主星系,共包含 1000 个蛇夫座天体,并延伸到蛇夫座天体测量结果最远的星系距离 1.3 亿光年的 NGC 5468。"这横跨了我们用哈勃测量的全部范围。因此,我们已经走到了宇宙距离阶梯第二级的尽头,"合著者、巴尔的摩太空望远镜科学研究所的加甘迪普-阿南德(Gagandeep Anand)说,该研究所为美国国家航空航天局(NASA)运营韦伯望远镜和哈勃望远镜。哈勃和韦伯对"哈勃张力"的确认,... PC版: 手机版:

封面图片

罗曼望远镜的强大能力将带来测量宇宙膨胀率的新维度

罗曼望远镜的强大能力将带来测量宇宙膨胀率的新维度 这幅哈勃太空望远镜拍摄的图像显示,一个星系嵌入一个巨大的星系团中,其强大的引力产生了其背后遥远的一颗超新星的多幅图像。图像显示了该星系在一个名为 MACS J1149.6+2223 的大型星系团中的位置,距离超过 50 亿光年。在该星系的放大插图中,箭头指向爆炸恒星的多幅图像,该恒星被命名为雷夫斯达尔超新星,距离地球 93 亿光年。资料来源:NASA、ESA、Steve A. Rodney(JHU)、Tommaso Treu(UCLA)、Patrick Kelly(UC Berkeley)、Jennifer Lotz(STScI)、Marc Postman(STScI)、Zolt G. Levay(STScI)、FrontierSN 小组、GLASS 小组、HFF 小组(STScI)、CLASH 小组。其中一个团队特别注重训练罗曼寻找引力透镜超新星,这种天体可以用于测量宇宙膨胀率的独特方法。他们说,罗曼对这些难以捉摸的透镜超新星的研究对宇宙学的未来有着巨大的潜力。美国国家航空航天局(NASA)的南希-格蕾丝-罗曼太空望远镜是为了纪念 NASA 的第一位首席天文学家而命名的,它代表着我们在探索了解宇宙的道路上的一次飞跃。这个尖端天文台计划于 2027 年 5 月发射,旨在探索暗能量的奥秘、研究系外行星,并以前所未有的清晰度揭示宇宙的膨胀速度。罗曼太空望远镜利用先进的技术对宇宙进行大范围、细致的观测,将为我们提供对宇宙的重要见解,增强我们对宇宙组成、结构和演化的了解。资料来源:美国国家航空航天局戈达德太空飞行中心天文学家正在研究宇宙中最紧迫的谜团之一宇宙膨胀的速度他们正准备利用美国国家航空航天局的南希-格蕾丝-罗曼太空望远镜(Nancy Grace Roman Space Telescope),以一种新的方式研究这个谜团。一旦罗曼望远镜于 2027 年 5 月发射升空,天文学家们将在罗曼望远镜的大范围图像中寻找引力透镜状超新星,这些超新星可以用来测量宇宙的膨胀速度。天文学家有多种独立的方法来测量宇宙目前的膨胀率,即哈勃常数。不同的技术得出不同的值,称为哈勃张力。罗曼的大部分宇宙学研究都将针对难以捉摸的暗能量,因为暗能量会影响宇宙随时间的膨胀。这些研究的一个主要工具是一种相当传统的方法,它将 Ia 型超新星等天体的固有亮度与其感知亮度进行比较,从而确定距离。另外,天文学家也可以使用罗曼法来研究重力透镜超新星。这种探索哈勃常数的方法与传统方法不同,因为它基于几何方法,而不是亮度。这幅插图利用哈勃太空望远镜拍摄的雷夫斯达尔超新星图像,展示了大质量星系团MACS J1149.6+2223的引力是如何弯曲并聚焦来自其背后的超新星的光线,从而产生爆炸恒星的多幅图像的。这种现象被称为引力透镜。引力透镜超新星为天文学家提供了一种计算哈勃常数宇宙加速的速率的独特方法。一个研究小组正准备利用美国宇航局即将于 2027 年 5 月发射的南希-格蕾丝-罗曼太空望远镜,让天文学家发现并研究这些罕见的天体。上图显示,当恒星爆炸时,它的光线穿过太空,遇到前景星系团。如果没有星系团,天文学家将只能探测到直射地球的超新星光线,并且只能看到超新星的单一图像。然而,在超新星多重成像的情况下,光路会被星系团的引力弯曲,并重新定向到新的光路上,其中有几条光路是指向地球的。因此,天文学家可以看到爆炸恒星的多幅图像,每幅图像都对应着其中一条改变的光路。每幅图像穿过星团的路线不同,到达地球的时间也不同,部分原因是光线到达地球的路径长度不同。精确测量多幅图像之间到达时间的差异,就可以得出一个距离组合,从而限制哈勃常数。在下图中,重定向光线穿过星团中的一个巨大椭圆星系。这个星系又增加了一层透镜作用,再一次改变了原本会错过我们的几条光路的方向,并将它们聚焦,使它们能够到达地球。资料来源:NASA、ESA、Ann Feild(STSCI)、Joseph DePasquale(STSCI)、NASA、ESA、Steve A. Rodney(JHU)、Tommaso Treu(UCLA)、Patrick Kelly(UC Berkeley)、Jennifer Lotz(STSCI)、Marc Postman(STSCI)、Zolt G. Levay(STSCI)、FrontierSN 小组、GLASS 小组、HFF 小组(STSCI)、CLASH 小组。引力透镜的前景位于巴尔的摩的空间望远镜科学研究所(STScI)的卢·斯特罗格是准备对罗曼望远镜进行研究的团队的共同负责人,他说:"罗曼是让引力透镜超新星研究起飞的理想工具。这些天体非常罕见,而且很难发现。我们不得不靠运气才能及早发现其中的几个。罗曼的大视野和高分辨率重复成像将有助于提高这些机会"。天文学家利用各种天文台,如美国宇航局的哈勃太空望远镜和詹姆斯-韦伯太空望远镜,在宇宙中发现了八颗引力透镜状超新星。然而,由于超新星的类型及其延时成像的持续时间,这八个超新星中只有两个是测量哈勃常数的可行候选者。当来自恒星爆炸等天体的光线在飞往地球的途中穿过星系或星系团,并被巨大的引力场偏转时,就会发生引力透镜现象。光线沿着不同的路径分裂,在天空中形成我们看到的超新星的多个图像。根据不同路径之间的差异,超新星图像会出现几小时到几个月,甚至几年的延迟。精确测量多幅图像之间到达时间的差异,就能得出距离组合,从而限制哈勃常数。罗曼望远镜的广泛勘测将能够以比哈勃更快的速度绘制宇宙地图,它在单幅图像中"看到"的面积是哈勃的 100 多倍。特别是,高纬度时域巡天将重复观测同一天空区域,这将使天文学家能够研究随时间变化的目标。这意味着将有大量的数据每次超过 50 亿像素需要进行筛选,以发现这些非常罕见的事件。斯特罗格是该计划的共同负责人,他是 STScI 的贾斯汀-皮埃尔(Justin Pierel)。他解释说:"这台新望远镜将使我们能够在一张快照中看到整个森林,而不是收集几张树木的照片。"由斯特罗格和皮埃尔领导的 STScI 小组正在通过美国宇航局太空和地球科学研究机会(ROSES)南希-格蕾丝-罗曼太空望远镜研究和支持参与机会计划资助的一个项目,为在罗曼数据中发现引力透镜超新星奠定基础。皮埃尔说:"由于这些超新星非常罕见,要充分利用引力透镜超新星的潜力,就必须做好充分准备。我们希望提前准备好寻找这些超新星的所有工具,这样当数据到来时,我们就不用浪费任何时间来筛选数以兆字节计的数据了"。该项目将由美国国家航空航天局(NASA)各中心和全国各大学的研究人员组成的团队实施。准备工作将分几个阶段进行。研究小组将创建数据还原管道,用于在罗曼成像中自动检测引力透镜超新星。为了训练这些管道,研究人员还将创建模拟成像:需要 50000 个模拟透镜,而目前已知的实际透镜只有 10000 个。斯特罗格和皮埃尔团队创建的数据缩减管道将补充正在创建的管道,以便利用 Ia 型超新星研究暗能量。"罗曼望远镜确实是创建黄金标准引力透镜超新星样本的第一次机会,"斯特罗格总结道。"我们现在的所有准备工作都将产生所需的所有成分,以确保我们能够有效地利用宇宙学的巨大潜力"。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

物理学家提出广义相对论的修正方案 解释引力在宇宙尺度上稍稍减弱的奇特现象

物理学家提出广义相对论的修正方案 解释引力在宇宙尺度上稍稍减弱的奇特现象 在过去的 100 年里,物理学家一直依靠阿尔伯特-爱因斯坦的"广义相对论"来解释引力如何在整个宇宙中起作用。广义相对论被无数次试验和观测证明是准确的,它表明引力不仅影响三个物理维度,还影响第四个维度:时间。该项目的第一作者、滑铁卢数学物理系应届毕业生罗宾-温(Robin Wen)说:"这个引力模型对于从宇宙大爆炸理论到拍摄黑洞的所有工作都至关重要。""但是,当我们试图理解宇宙尺度上的万有引力时,在星系团甚至更远的尺度上,我们遇到了与广义相对论预言明显不一致的地方。就好像引力本身不再完全符合爱因斯坦的理论一样。我们把这种不一致称为'宇宙故障':当距离达到数十亿光年时,引力会变弱约百分之一。"二十多年来,物理学家和天文学家一直在努力创建一个数学模型,以解释广义相对论明显不一致的地方。滑铁卢大学在应用数学家和天体物理学家的跨学科合作下,开展了长期的尖端引力研究。滑铁卢大学天体物理学教授、外围研究所研究员尼耶什-阿夫肖迪(Niayesh Afshordi)说:"近一个世纪前,天文学家发现我们的宇宙正在膨胀。星系距离越远,移动速度越快,以至于它们似乎以接近光速的速度移动,而这正是爱因斯坦理论所允许的最大速度。我们的发现表明,在这些尺度上,爱因斯坦的理论可能也是不够的。"研究小组的"宇宙故障"新模型修改并扩展了爱因斯坦的数学公式,在不影响广义相对论现有成功应用的情况下,解决了一些宇宙学测量不一致的问题。"把它想象成爱因斯坦理论的脚注,"温说。"一旦达到宇宙尺度,就会出现条件。这个新模型可能只是我们开始跨越时空解开宇宙谜题的第一条线索。温这项题为"引力中的宇宙故障"的研究发表在《宇宙学与天体粒子物理学杂志》上。DOI: 10.1088/1475-7516/2024/03/045编译来源:ScitechDaily ... PC版: 手机版:

封面图片

NASA实时揭秘:看看韦伯和哈勃现在正在观测什么

NASA实时揭秘:看看韦伯和哈勃现在正在观测什么 美国国家航空航天局(NASA)的"太空望远镜直播"(Space Telescope Live)提供有关哈勃和詹姆斯-韦伯太空望远镜观测的实时更新和全面详情,增强公众对天文研究的参与和了解。来源:美国国家航空航天局NASA 的 Space Telescope Live 由马里兰州巴尔的摩的太空望远镜科学研究所设计和开发,它提供了当前和即将进行的观测细节的内部访问:不仅包括每台望远镜正在观测的内容,还包括目标在天空中的位置、数据收集的方式以及研究人员希望回答的问题。识别、定位和放大显示最新目标的地图。回转到下一个目标,再回到上一个目标。监控时间表。查看科学仪器。查看昨天的观测情况,研究计划书,还可以查看哈勃和韦伯过去观测的全部目录。詹姆斯-韦伯太空望远镜艺术家概念图。资料来源:美国国家航空航天局要知道美国宇航局的哈勃和詹姆斯-韦伯太空望远镜过去观测到了什么并不难。美国国家航空航天局(NASA)多产的天文观测台所捕捉到的图像、光谱和其他数据,几乎每周都会带来宇宙大发现的消息。但哈勃和韦伯此时此刻在看什么呢?孕育着新生恒星的朦胧星柱?一对相撞的星系?一颗遥远行星的大气层?在130亿年的太空之旅中被拉伸和扭曲的银河系光线?美国国家航空航天局(NASA)的"太空望远镜直播"(Space Telescope Live)是一个最初于2016年开发的网络应用程序,用于提供哈勃目标的实时更新,现在可以方便地访问哈勃和韦伯当前、过去和即将进行的观测的最新信息。这一探索性工具由巴尔的摩的太空望远镜科学研究所为美国国家航空航天局设计和开发,为公众提供了一种直观、吸引人的方式,让他们更多了解天文调查是如何进行的。哈勃太空望远镜在轨插图。来源:美国国家航空航天局通过重新设计的用户界面和扩展的功能,用户不仅可以了解每台望远镜目前正在观测的行星、恒星、星云、星系或深空区域,还可以了解这些目标在天空中的确切位置;正在使用哪些科学仪器来捕捉图像、光谱和其他数据;观测的确切时间和持续时间;观测的状态;谁在领导这项研究;以及最重要的是,科学家们正在试图发现什么。经批准的科学计划的观测信息可通过空间望远镜米库尔斯基档案馆(Mikulski Archive for Space Telescopes)获取。美国国家航空航天局的太空望远镜实时系统(Space Telescope Live)提供了获取这些信息的便捷途径不仅包括当天的目标,还包括过去观测的整个目录韦伯望远镜的记录可以追溯到 2022 年 1 月的首个调试目标,而哈勃望远镜的记录则可以追溯到 1990 年 5 月开始运行时。以目标位置为中心的可缩放天空图是利用Aladin 天空图集绘制的,并配有地面望远镜的图像,为观测提供背景信息。(由于哈勃望远镜和韦伯望远镜的数据在向公众和天文学界发布之前必须经过初步处理,在许多情况下还必须经过初步分析,因此本工具中没有这两台望远镜的实时图像)。目标名称和坐标、计划开始和结束时间以及研究课题等详细信息直接来自观测调度和建议规划数据库。该工具内的链接可引导用户访问原始研究计划,作为获取更多技术信息的入口。美国国家航空航天局最新版本的"太空望远镜直播"与上一版本相比发生了重大转变,但该团队已在收集用户反馈,并计划推出更多增强功能,以提供更深入的探索和了解机会。NASA 的"太空望远镜直播"可在台式机和移动设备上运行,并可通过 NASA 的哈勃和韦伯官方网站访问。编译自:ScitechDaily ... PC版: 手机版:

封面图片

引力是学生学物理时最先接触的内容。经典引力发展到广义相对论达到了顶峰,但引力和量子物理学的结合(量子引力)至今未完成。宇宙演化是

引力是学生学物理时最先接触的内容。经典引力发展到广义相对论达到了顶峰,但引力和量子物理学的结合(量子引力)至今未完成。宇宙演化是各方人士关注的问题,它和引力间的关系至为密切,两个面向的物理问题交织在一起。引力的秘密和宇宙的演化仍存在著一些深刻的悬念。本书以通俗语言为读者解释内容,并试图深入讲解,使人们了解为什么物理认识是如此发展过来的。作者致力于告诉读者,科学家特别是大师门是如何思考的,因此本书特别具有启发性。 本书是作者在《可畏的对称》成为畅销书之后的另一部科普著作,原名《原人的玩具》,1989年第一版,2000年由作者加跋修订,牛津大学出版社出版第二版。他从重力开始,从牛顿讲到爱因斯坦,从「老人的玩具」引入作为广义相对论基础的等价原理以及时空弯曲;再由引力进入膨胀的宇宙、物质的产生以及暗物质的存在;然后再次回到重力,讲述重力和量子理论结合的问题,涉及超弦以及膜理论;最后归结到自然的可认识问题。

封面图片

韦伯与哈勃的结合:穿越创世之柱的震撼3D之旅

韦伯与哈勃的结合:穿越创世之柱的震撼3D之旅 这张图片是"创世之柱"可视化图像中同一画面的可见光和红外光视图的马赛克。哈勃太空望远镜版本(可见光)和韦伯太空望远镜版本(红外光)交替显示了为可视化序列创建的创世之柱三维模型。资料来源:Greg Bacon(STScI)、Ralf Crawford(STScI)、Joseph DePasquale(STScI)、Leah Hustak(STScI)、Christian Nieves(STScI)、Joseph Olmsted(STScI)、Alyssa Pagan(STScI)、Frank Summers(STScI)、NASA's Universe of Learning来自马里兰州巴尔的摩太空望远镜科学研究所(STScI)NASA"学习的宇宙"(Universe of Learning)的一个团队,通过结合NASA哈勃(Hubble)和詹姆斯-韦伯(James Webb)太空望远镜的数据,制作出了鹰星云中高耸的"创世之柱"的全新三维可视化图像,令人叹为观止。这是迄今为止关于这些标志性恒星孕育云的最全面、最详细、最多波长的影片。1995 年,美国国家航空航天局的哈勃太空望远镜让位于鹰星云中心的创世之柱一举成名,它们以其摄人心魄的空灵之美俘获了全世界的想象力。现在,美国国家航空航天局(NASA)利用哈勃和詹姆斯-韦伯太空望远镜的数据,发布了关于这些高耸的天体结构的全新三维可视化图像。这是迄今为止关于这些恒星孕育云的最全面、最详细的多波长影片。位于巴尔的摩的太空望远镜科学研究所(STScI)的首席可视化科学家弗兰克-萨默斯(Frank Summers)解释说:"通过飞过这些天柱并置身其中,观众可以体验到它们的三维结构,并看到它们在哈勃可见光视图与韦伯红外光视图中的不同外观,这种对比有助于他们理解为什么我们有不止一台太空望远镜来观测同一天体的不同方面。"他是美国国家航空航天局"学习的宇宙"电影开发团队的负责人。四根创世之柱主要由冷氢分子和尘埃构成,正在被附近年轻炽热恒星的狂风和紫外线侵蚀。比太阳系还大的指状结构从创世神柱顶端伸出。在这些指状结构中,可以嵌入胚胎恒星。最高的星柱横跨三光年,相当于太阳和下一颗最近恒星之间距离的四分之三。影片带领参观者进入石柱的三维结构。这段视频并非艺术诠释,而是基于英国达勒姆大学副教授安娜-麦克劳德(Anna McLeod)领导的一篇科学论文中的观测数据。麦克劳德还担任了项目的科学顾问。"创世之柱一直是我们想制作的三维作品。韦伯数据与哈勃数据的结合让我们能够看到创世神柱更完整的细节,"STScI的制作负责人格雷格-培根(Greg Bacon)说。"了解科学以及如何以最佳方式表现科学,让我们这个人才济济的小团队能够应对将这一标志性结构可视化的挑战。"新的可视化技术帮助观众体验世界上最强大的两台太空望远镜是如何协同工作,为天柱提供更复杂、更全面的描述。哈勃看到的是在数千度可见光下发光的物体。韦伯的红外视觉对温度只有几百度的较冷天体很敏感,它能穿透遮蔽的尘埃,看到嵌入星柱中的恒星。位于华盛顿的美国国家航空航天局总部天体物理学部主任马克-克兰平(Mark Clampin)说:"当我们把美国国家航空航天局的太空望远镜在不同波长光线下的观测结果结合起来时,我们就拓宽了对宇宙的认识。创世之柱区域不断为我们提供新的见解,加深了我们对恒星如何形成的理解。现在,通过这一新的可视化技术,每个人都能以全新的方式体验这一丰富迷人的景观。"该三维可视化视频将与美国国家航空航天局天体物理学任务中的科学和科学家的直接联系与对青少年、家庭和终身学习者观众需求的关注结合在一起。它使观众能够探索科学中的基本问题,体验科学是如何完成的,并亲自发现宇宙。图像中突出显示了恒星形成的几个阶段。当观众走近中央星柱时,会看到星柱顶端有一颗嵌入其中的幼年原恒星,在红外光下闪烁着耀眼的红光。在左侧星柱顶部附近,是一颗新生恒星喷射出的物质的对角喷流。虽然喷流是恒星诞生的证据,但观众看不到恒星本身。最后,在左侧星柱一根突出的"手指"末端,是一颗炽热的全新恒星。这张照片展示的是鹰星云中著名的创世之柱的 3D 打印模型。创世之柱可视化中使用的三维雕刻计算机模型被转换成了STL文件格式,并放置在一个圆形底座上,供三维打印机使用。资料来源:Leah Hustak(STScI)、Ralf Crawford(STScI)、NASA's Universe of Learning这次可视化的附加产品是创世之柱的全新3D 打印模型。可视化中使用的四根支柱的基础模型已被调整为 STL 文件格式,这样观众就可以下载模型文件并用 3D 打印机打印出来。以这种触感和互动的方式来研究这些支柱的结构,为整体体验增添了新的视角和见解。通过美国国家航空航天局"学习的宇宙"(Universe of Learning)制作的其他产品,如"视空间"(ViewSpace),可以探索星云科学与学习者之间的更多可视化联系。参观者不仅可以观看视频,还可以利用博物馆和天文馆现在提供的互动工具探索太空望远镜拍摄的图像。美国国家航空航天局的"学习的宇宙"(Universe of Learning)教材是根据美国国家航空航天局授予太空望远镜科学研究所(Space Telescope Science Institute)的编号为 NNX16AC65A 的奖项,与加利福尼亚州帕萨迪纳的加州理工学院/IPAC、马萨诸塞州剑桥的哈佛和史密森天体物理学中心(Center for Astrophysics | Harvard & Smithsonian)以及加利福尼亚州拉卡纳达弗林特里奇的喷气推进实验室(Jet Propulsion Laboratory)合作编写的。哈勃太空望远镜于 1990 年发射升空,是天文学史上最重要的仪器之一。哈勃望远镜在距地球约 547 公里的高空环绕地球运行,它不受地球大气层的遮挡,以异常清晰和深邃的视角观察宇宙,彻底改变了我们对宇宙的认识。几十年来,它提供了宝贵的数据和令人惊叹的图像,促成了天体物理学各个领域的重大发现,包括宇宙膨胀率、暗物质的存在以及系外行星的特性。与地面望远镜不同,哈勃可以捕捉紫外线、可见光和近红外线的高分辨率图像,提供天体和现象的全面视图,改变了科学知识和公众对太空探索的兴趣。2021 年 12 月 25 日发射的詹姆斯-韦伯太空望远镜(JWST)代表了太空观测站的下一次飞跃。韦伯望远镜距离地球近 150 万公里,主要用于红外光谱观测宇宙,可以比以往任何时候都更早地观测到宇宙大爆炸之后。这种能力使天文学家能够研究第一批星系、恒星和行星系统的形成。与其前身哈勃太空望远镜相比,韦伯望远镜拥有一整套先进的仪器和更大的主镜,提供了前所未有的分辨率和灵敏度,使其成为探索系外行星大气层和探测可能存在的生命迹象的理想选择。该望远镜位于第二拉格朗日点(L2)的独特位置,使其免受太阳和地球的光和热的影响,确保它能够在观测宇宙时将干扰降到最低。美国国家航空航天局(NASA)的"学习的宇宙"(Universe of Learning)是一项综合天文学学习和教育计划,它提供资源和体验,帮助受众了解宇宙,同时将他们与美国国家航空航天局(NASA)天体物理学任务的科学和技术联系起来。通过NASA科学任务局、太空望远镜科学研究所、IPAC/加州理工学院、喷气推进实验室和史密森天体物理天文台之间的合作,该计划提供了广泛的材料,包括可视化、互动模拟和教育活动。这些资源旨在让所有年龄段的学习者都参与到科学发现的过程中来,激励下一代天文学家,增进公众对宇宙的了解。编译自/scitechdaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人