微软希望你在 Azure 中构建量子应用

微软希望你在 Azure 中构建量子应用 微软认为,需要一台相当强大的 P 级超级计算机,能够以 10-100 Tbit/s 的速度与量子元素连接,才能实现容错的量子计算机,而只有云才能提供实现这一目标所需的规模。本周,微软向公众提供了平台,以实现这一目标。与一些在仿真环境中提供量子计算,以帮助开发者探索使用量子算法的项目不同,微软似乎是在真正的量子硬件上做这件事,微软与一系列使用各种技术的量子计算供应商建立了合作。但该产品并不是针对生产工作负载的,主要是针对那些有相当高的预算的研究人员和科学家运行探索性应用。来源 ,, 来自:雷锋 频道:@kejiqu 群组:@kejiquchat 投稿:@kejiqubot

相关推荐

封面图片

全球首款拓扑架构量子芯片问世,微软称量子计算将在数年内实现

全球首款拓扑架构量子芯片问世,微软称量子计算将在数年内实现 经过近20年研究,微软于美国当地时间周三推出了其首款量子计算芯片Majorana 1。微软表示,开发Majorana 1需要创造一种全新的物质状态,即所谓的“拓扑体”。众所周知,量子计算机的核心是量子比特(qubits),这是量子计算中的信息单位,类似于今天计算机使用的二进制。问题在于,量子比特相当脆弱,并且对环境噪声非常敏感,可能导致…… - 电报频道 - #娟姐新闻: @juanjienews

封面图片

微软预计10年内打造量子超级计算机

微软预计10年内打造量子超级计算机 微软今天宣布了其建立自己的量子超级计算机的路线图,使用该公司的研究人员已经研究了相当多年的拓扑量子比特。还有很多中间的里程碑要达到,但微软高级量子开发副总裁Krysta Svore告诉我们,该公司相信,使用这些量子比特建造一台量子超级计算机将需要不到10年的时间,该计算机将能够每秒执行一百万次可靠的量子操作。这是微软推出的一个新的衡量标准,因为整个行业旨在超越目前的嘈杂的中尺度量子(NISQ)计算时代。 来源:

封面图片

微软和Quantinuum宣布在量子纠错方面取得重大突破

微软和Quantinuum宣布在量子纠错方面取得重大突破 这两家公司表示,现在量子计算的最先进技术已经走出了通常被称为"嘈杂中间规模量子(NISQ)计算机"的时代。之所以说"嘈杂",是因为即使是环境中最微小的变化,也会导致量子系统从本质上变得随机(或"解旋");之所以说"中间规模",是因为目前的量子计算机最多仍局限于一千多个量子比特。量子比特是量子系统计算的基本单位,类似于传统计算机中的比特,但每个量子比特可以同时处于多种状态,并且在测量之前不会落入特定位置,这就是量子在计算能力方面实现巨大飞跃的潜力所在。如果来不及运行一个基本算法,系统就会变得过于嘈杂,无法得到有用的结果,或者根本得不到任何结果,那么你有多少个比特也就不重要了。结合几种不同的技术,该团队能够在几乎没有错误的情况下运行数千次实验。这需要做大量的准备工作,并预先选择那些看起来已经具备成功运行条件的系统,但与不久前的情况相比,这仍然是一个巨大的进步。这是量子计算朝着正确方向迈出的一步。还有很多问题有待解决(当然,这些结果也需要复制),但从理论上讲,一台拥有 100 个这样的逻辑量子比特的计算机已经可以用于解决一些问题,而一台拥有 1000 个量子比特的机器,正如微软所说,可以"释放商业优势"。纠缠的量子比特之间的差异(误差)。通过比较一对量子比特中每个量子比特的图像可以发现差异,存在的任何差异都会以点的形式出现在每对量子比特的中心图像上。研究小组使用 Quantinuum 的H2赛道陷波离子量子处理器,将 30 个物理量子比特组合成四个高度可靠的逻辑量子比特。将多个物理量子位编码成一个逻辑量子位有助于保护系统不出错。物理量子位纠缠在一起,这样就有可能检测到物理量子位中的错误并加以修复。长期以来,纠错一直困扰着业界:当然,物理比特的噪声越小、质量越高越好,但如果没有先进的纠错技术,NISQ 时代就无从谈起,因为这些系统迟早都会解体。"仅仅增加具有高错误率的物理量子比特的数量而不提高错误率是徒劳的,因为这样做将导致大型量子计算机的功能并不比以前更强大,"Azure Quantum总经理丹尼斯-汤姆(Dennis Tom)和微软高级量子开发副总裁克里斯塔-斯沃尔(Krysta Svore)在今天的公告中写道。"与此相反,当具有足够运行质量的物理量子比特与专门的协调和诊断系统配合使用以启用虚拟量子比特时,只有这样,物理量子比特数量的增加才会带来强大、容错的量子计算机,从而能够执行更长时间、更复杂的计算。"几年前,逻辑量子比特的性能才开始超过物理量子比特。现在,微软和 Quantinuum 认为,他们的新硬件/软件系统展示了物理和逻辑错误率之间的最大差距,比只使用物理比特的系统提高了 800 倍。研究人员指出,要超越 NISQ,逻辑量子比特和物理量子比特的错误率之间必须有很大的差距,还必须能够纠正单个电路错误,并在至少两个逻辑量子比特之间产生纠缠。如果这些结果成立,那么该团队就实现了这三点,我们也就进入了弹性量子计算时代。事实证明,这里最重要的成果可能是该团队执行"主动综合征提取"的能力,即在不破坏逻辑量子比特的情况下诊断错误并纠正错误的能力。汤姆和斯沃尔解释说:"这一成就标志着我们在不破坏逻辑量子比特的情况下纠正错误迈出了第一步,是量子纠错领域的一个基本里程碑。我们的量子比特虚拟化系统展示了可靠量子计算的这一关键组成部分,在多轮综合征提取中实现了较低的逻辑错误率"。现在就看量子界的其他成员能否复制这些成果,并实现类似的纠错系统了,这可能只是时间问题。Quantinuum创始人兼首席产品官伊利亚斯-汗(Ilyas Khan)表示:"今天的成果标志着一项历史性的成就,是双方合作不断推动量子生态系统发展的绝佳体现。微软最先进的纠错技术与世界上最强大的量子计算机和完全集成的方法相得益彰,我们对量子应用的下一步发展感到非常兴奋,迫不及待地想看到我们的客户和合作伙伴将如何从我们的解决方案中获益,尤其是在我们向量子处理器规模化发展的过程中。"欲了解更多详情,请点击此处查看技术文档。 ... PC版: 手机版:

封面图片

IBM和日本研究所开发下一代量子计算机 拥有10000个量子比特

IBM和日本研究所开发下一代量子计算机 拥有10000个量子比特 量子计算机以解决传统计算机无法解决的复杂问题而闻名。它们有望帮助发现新药,通过更高效的分销路线改善物流,以及许多其他应用。该研究所和IBM预计将在未来几天签署谅解备忘录并宣布这笔交易。据该研究所称,这将是IBM首次与外国研究机构在如此大规模的量子计算领域展开合作。正在开发的量子计算机预计将于2029年投入使用。该计算机拥有超过10000个量子比特,有望无误地计算高级组合。合作伙伴还将开发下一代量子计算机所需的半导体和超导集成电路。量子计算机在接近绝对零度的极低温度下运行,因此需要能够承受极端温度的半导体和电路。该研究所隶属于日本经济产业省,以其在人工智能(AI)相关技术方面的实力而闻名,并拥有与IBM合作项目所需的专利。它还希望引入日本零部件制造商,实现量产。IBM预计将在2025年开始销售拥有1000量子比特的量子计算机。该研究所和IBM将说服日本公司使用它们。该研究所将通过培训日本公司使用量子计算机做出贡献,例如制药商。量子计算机仍处于发展阶段。现有的133量子比特的量子计算机仍然会出错,在研究中使用时通常需要超级计算机的帮助。预计10000量子比特的版本无需超级计算机的帮助即可使用。科学家表示,要使量子计算机投入商业使用,硬件需要达到20000到30000个量子比特的水平。 ... PC版: 手机版:

封面图片

【IBM、微软等公司成立后量子密码学联盟】

【IBM、微软等公司成立后量子密码学联盟】 IBM Quantum、微软已经与非营利性研究机构MITRE、英国密码公司PQShield、谷歌兄弟公司SandboxAQ和滑铁卢大学组成了一个联盟,共同解决后量子密码学问题。后量子密码学(PQC)解决了未来量子计算机带来的潜在威胁。当前的密码方案依赖于数学问题来阻止解密尝试。根据新闻稿,为PQC过渡做的准备包括制定算法标准;创建这些算法的安全、可靠和高效的实现;并将新的后量子算法集成到密码库和协议中。 快讯/广告 联系 @xingkong888885

封面图片

BBC:量子技术突破可能带来计算机革命

BBC:量子技术突破可能带来计算机革命 研究人员离实现制造多任务的“量子”计算机又近了一步,那将是比现有的最先进的超级计算机更强大的计算机。 量子计算机利用了亚原子粒子的怪异特性。 所谓的量子波粒能够同时存在于两个地方,而且即使分隔数百万英里仍然匪夷所思地能够保持关联性。 英国苏塞克斯大学(Sussex University)的研究团队实现了在电脑芯片之间以前所未有的速度和精度传送量子信息。 一个研究当中的障碍就是需要在芯片之间迅速和可靠地传送量子信息:信息受损就会产生误差。 不过汉辛格教授的团队已经取得了突破,他们发表在《自然通讯》期刊上的研究表明,他们可能已经克服了上述障碍。 这个团队研发了从一个芯片向另外一个芯片以创纪录的速度传送信息的系统,传送可靠率达到了99.999993%。研究人员说,这显示了在原则上许多芯片能够插在一起形成算力更强大的量子计算机。 (节选)

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人