大型AI模型出现的不可预测的能力

大型AI模型出现的不可预测的能力 在去年组织的一次测试中,研究人员输入不同的提示去测试不同规模大语言模型的能力。其中之一是一个女孩和三条鱼的绘文字,询问它们描述了哪部电影。最小的模型产生了超现实的答案:“The movie is a movie about a man who is a man who is a man”。中等复杂度的模型猜测是《Emoji大电影》,最复杂的模型一锤定音《海底总动员(Finding Nemo)》。计算机科学家对大语言模型的表现非常吃惊。语言模型已经研究了几十年,五年前最强大的模型是基于递归神经网络,本质上是根据提供的文本字符串猜测下一个单词是什么,所谓递归是从输出中不断学习,利用反馈去改进性能。2017 年 Google Brain 的研究人员提出了被称为 transformer 的新型架构。递归网络是逐字分析句子,transformer 则是同时处理所有单词,它能并行处理大块文本。Transformers 能通过增加模型的参数快速扩展语言模型的复杂度。2020 年 OpenAI 的研究人员发现随着参数规模的增加语言模型改进了其能力和准确度。但大语言模型也同时带来了一些始料未及的东西。研究人员发现大语言模型产生了数以百计的“新”能力,这种行为被称为涌现。研究人员如今正努力去识别新的涌现能力,以及找出背后的原因本质上是去尝试预测不可预测性。了解涌现可揭示出 AI 和一般机器学习深层问题的答案,如复杂模型是真的在做新事情,还是极其擅长统计。它还可帮助研究人员去利用潜在的益处和减少涌现风险。来源 , 来自:雷锋 频道:@kejiqu 群组:@kejiquchat 投稿:@kejiqubot

相关推荐

封面图片

新研究:大语言模型“涌现”能力不令人惊讶也不难预测

新研究:大语言模型“涌现”能力不令人惊讶也不难预测 在这些任务中,大多数情况下,随着模型规模的增大,性能呈现出可预测的平稳提升即模型越大,性能越好。但在其他任务中,模型性能的提升却不是那么稳定,一段时间内性能几乎为零,然后突然出现显著提升,其他研究也发现了类似的性能飞跃现象。研究人员将这种现象描述为“突破性”行为,而其他人则将其比作物理学中的相变,如液态水转变为冰。2022年8月份发表的一篇论文中指出,这些现象不仅出乎意料,而且难以预测,它们对于人工智能的安全性、潜力和风险的讨论提供了更多的视角。研究人员用“涌现”(emergent)一词来描述这种仅在系统达到一定复杂程度时才出现的行为。然而,真相可能并不那么简单。斯坦福大学的三位研究人员在一篇新论文中认为,这种性能的突然提升仅仅是反映了我们衡量大语言模型性能的方法。他们认为,这种能力既不是不可预测的,也不是突然出现的。“这种变化比大家想象的要容易预测得多,”斯坦福大学计算机科学家、论文的资深作者萨恩米·科耶乔(Sanmi Koyejo)表示,“所谓的涌现更多地与我们选择的衡量模型工作方式有关。”研究人员之所以现在才开始发现和研究这种行为,是因为这些模型已变得足够大。大语言模型通过分析大量文本数据集包括书籍、网络搜索结果和维基百科等,来寻找经常共现的单词间的联系。模型的规模按参数数量衡量,参数越多,模型能发现的联系就越多。GPT-2拥有15亿个参数,而支持ChatGPT的GPT-3.5则使用了3500亿个参数。据报道,2023年3月首次亮相的GPT-4使用了1.75万亿个参数,现在它也成了微软人工智能助理Microsoft Copilot的基础模型。这种规模的快速增长带来了性能和效率的显著提升,没有人会质疑规模足够大的大语言模型能完成小型模型无法完成的任务,包括那些它们未经训练的任务。斯坦福大学的三位研究人员将涌现看作是一种“幻觉”,他们认为,随着规模的扩大,大语言模型自然而然应该变得更加高效;较大模型增加的复杂性使其在处理更难和更多样化的问题时表现得更为出色。但这三位研究人员认为,这种改进是否呈现为平稳可预测的提升,或是参差不齐的突然飞跃,主要取决于所选择的衡量标准,甚至可能是由于测试样本的不足,而非模型内部运作机制本身。例如,三位数加法就是一个典型例子。在2022年的BIG-bench研究中提出,研究人员报告称,在参数较少的情况下,GPT-3和另一大语言模型LAMDA均无法准确解决加法问题。然而,当GPT-3的参数增至130亿时,其性能如同开关被打开一样突然改变。GPT-3突然间就能够正确完成加法运算,当LAMDA的参数增至680亿时也是如此。这表明,完成加法运算的能力似乎在某个参数阈值时突然出现。但斯坦福大学的研究人员指出,之前对大语言模型的评价标准仅仅基于准确性:模型要么能做到,要么做不到。因此,即便模型最初能够正确预测出大部分数字,也被判定为失败。这种评价方式显得有些不合理。如果任务是计算100加278,那么结果为376显然比-9.34要准确得多。因此,科耶乔和他的研究合作者采用了一种奖励部分正确答案的衡量标准来测试同一任务。科耶乔表示:“我们可以问:模型预测第一个数字的准确度有多高?第二个、第三个数字呢?”科耶乔认为这项新研究的灵感来源于他的研究生赖兰·谢弗(RylanSchaeffer),他称谢弗注意到大语言模型的表现随着评估方法的不同而变化。与斯坦福大学的同学白兰度·米兰达(Brando Miranda)共同研究后,他们采用了新的评估指标,发现随着模型参数的增加,大语言模型在解决加法问题时预测的数字序列的准确度逐渐提高。这说明,模型解决加法问题的能力并非突然出现;换言之,这种能力的涌现并非不可预测的突然跳变,而是一个可预测的、稳步的变化过程。他们发现,当采用不同的度量标准衡量性能时,“涌现”现象就消失了。尽管如此,其他科学家认为,这项工作并未完全排除“涌现”概念的存在。例如,美国东北大学(Northeastern University)计算机科学家李天石指出,这三位研究人员的论文并未明确解释在哪些度量标准或情况下,大语言模型的性能会显示出突然的提升。她说:“因此,从这个意义上说,这些能力仍然是不可预测的。”现在在OpenAI工作的计算机科学家杰森·魏(Jason Wei)曾编制过一份关于模型“涌现”能力的清单,也是BIG-bench论文的作者之一,他认为,早期关于“涌现”能力的说法是合理的,因为对于算术这样的能力来说,正确的答案才是最重要的。人工智能初创公司Anthropic的研究科学家亚历克斯·塔姆金(Alex Tamkin)表示:“这种探讨绝对很有意思。”他认为,新论文巧妙地分解了多步骤任务,以识别各个组成部分的贡献。塔姆金说,“但这并不是全部故事。我们不能说所有这些跳变都是幻觉。我仍然认为,即使在进一步预测或使用连续指标的情况下,文献显示性能提升仍有不连续性。当你增加模型的规模时,仍然可以看到它以跳变的方式变得更好。”即使如今对大语言模型中的“涌现”能力的理解可能因采用不同的衡量工具而有所改变,但对于未来更大、更复杂的大语言模型来说,情况可能会有所不同。莱斯大学的计算机科学家胡侠表示:“当我们把大语言模型训练到下一个层次时,它们不可避免地会从其他任务和模型中借鉴知识。”这种对“涌现”能力的新理解不仅是研究人员需要考虑的一个抽象问题。对塔姆金而言,这直接关系到如何继续预测大语言模型的性能。“这些技术已经如此广泛和普及,”他说。“我希望社区将此作为一个起点,继续强调为这些现象建立一门预测科学的重要性。我们怎样才能不对下一代模型的出现感到惊讶呢?”(辰辰) ... PC版: 手机版:

封面图片

:赋予大型预训练语言模型遵循复杂指令的能力

:赋予大型预训练语言模型遵循复杂指令的能力 遵循指令的能力对大部分开源大语言模型来说是一个独特的挑战。该项目提出的解决方案是使用LLM本身来生成指令数据。 研究人员开发的Evol-Instruct方法随机选择不同类型的进化操作来将简单指令升级为更复杂的指令,或者创建全新的指令。然后使用进化的指令数据来微调LLM,从而创建WizardLM。

封面图片

GPT是如何获得它的能力的? 追踪语言模型的涌现能力 | 最近,OpenAI的预训练模型ChatGPT给人工智能领域的研究人员留

GPT是如何获得它的能力的? 追踪语言模型的涌现能力 | 最近,OpenAI的预训练模型ChatGPT给人工智能领域的研究人员留下了深刻的印象和启发。毫无疑问,它又强又聪明,且跟它说话很好玩,还会写代码。它在多个方面的能力远远超过了自然语言处理研究者们的预期。于是就有一个问题:ChatGPT 是怎么变得这么强的?它的各种强大的能力到底从何而来?在这篇文章中,我们试图剖析 ChatGPT 的突现能力(Emergent Ability),追溯这些能力的来源,希望能够给出一个全面的技术路线图,来说明 GPT-3.5 模型系列以及相关的大型语言模型是如何一步步进化成目前的强大形态。 这篇文章旨在能够促进大型语言模型的透明度,成为开源社区共同努力复现 GPT-3.5 的路线图。

封面图片

为了让开发者也能用上 AI 大型语言模型 (LLM) 的能力,微软在 GitHub 上开源了一个轻量级 SDK:,可以说是部分

为了让开发者也能用上 AI 大型语言模型 (LLM) 的能力,微软在 GitHub 上开源了一个轻量级 SDK:,可以说是部分 Copilot 的解决方案。 该 SDK 支持和封装了来自最新 AI 研究的多种设计模式,以便开发人员可以将复杂的 技能注入他们的应用程序。 SDK 提供了提示链、递归推理、总结、零 / 少样本学习、上下文记忆、长期记忆、嵌入、语义索引、规划和访问外部知识存储以及内部数据等功能。

封面图片

Arcee 的 MergeKit:用于合并大型语言模型的工具包 |

Arcee 的 MergeKit:用于合并大型语言模型的工具包 | 提出MergeKit,一个开源、模块化、可扩展的模型合并库,使研究人员和实践者可以高效地合并预训练语言模型,从而创造出性能更优异、适应范围更广的新模型。

封面图片

微软公布可以理解图像内容的 AI 模型

微软公布可以理解图像内容的 AI 模型 微软的研究人员介绍了多模态模型 ,它可以分析图像内容,解决拼图问题,进行视觉文本识别,通过视觉智商测试,并理解自然语言指令。研究人员认为,整合了文本、音频、图像和视频等不同输入模式的多模态人工智能,是建立人工通用智能(AGI)的关键步骤,可以执行人类水平的一般任务。他们在一些测试中评估了 Kosmos-1 的能力,包括语言理解、语言生成、无光学字符识别的文本分类、图像说明、视觉问题回答、网页问题回答和零样本图像分类。微软称,在许多这些测试中,Kosmos-1 的表现超过了目前最先进的模型。来源 , 来自:雷锋 频道:@kejiqu 群组:@kejiquchat 投稿:@kejiqubot

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人