国产光刻机工厂落地雄安?中国电子院澄清:这是北京高能同步辐射光源

国产光刻机工厂落地雄安?中国电子院澄清:这是北京高能同步辐射光源 近期,一则消息在各大视频平台广为传播,称清华大学EUV项目把ASML的光刻机巨大化,实现了光刻机国产化,并表示这个项目已经在雄安新区落地。对此,中国电子工程设计院有限公司发声,称该项目并非网传的国产 #光刻机 工厂,而是北京高能同步辐射光源项目(HEPS)

相关推荐

封面图片

网传“国产光刻机工厂落地雄安” 中国电子院澄清

网传“国产光刻机工厂落地雄安” 中国电子院澄清 针对“清华大学EUV项目把阿斯麦(ASML)的光刻机巨大化,实现光刻机国产化”的传闻,中国电子院回应称,该项目并非网传的国产光刻机工厂,而是北京高能同步辐射光源项目。 据澎湃新闻早前报道,一则在各大社交平台上广为流传的视频称,北京清华大学科研团队弯道超车,突破美国技术封锁,实现光刻机的巨大化,国产EUV光刻机获得突破,并称该项目已在河北省保定市雄安新区落地。 中国电子工程设计院有限公司星期一(9月18日)通过官方微信公众号澄清,上述项目并非网传的中国国产光刻机工厂,而是北京高能同步辐射光源项目(HEPS)。 中国电子院介绍,HEPS坐落于北京怀柔雁栖湖畔,是国家“十三五”重大科技基础设施,是中国第一台高能量同步辐射光源,也是世界上亮度最高的第四代同步辐射光源之一。这个项目早在2019年就开始建设、将于2025年底投入使用。 中国电子院表示,HEPS可以被视为一个超精密、超高速、具有强大穿透力的巨型X光机,它产生的小光束可以穿透物质、深入内部进行立体扫描,从分子、原子的尺度多维度地观察微观世界。 中国电子院强调,HEPS是进行科学实验的大科学装置,并不是网传的光刻机工厂。

封面图片

高能同步辐射光源储存环全环贯通

高能同步辐射光源储存环全环贯通 HEPS储存环束流轨道周长约1360.4米,用于储存高能高品质电子束,同时产生同步辐射光,是世界上第三大、国内第一大光源加速器,也是我国第一台高能量同步辐射光源、第一台第四代同步辐射装置。它采用48周期的七弯铁消色散磁聚焦结构方案,6GeV能量下的束流水平自然发射度优于60pm·rad。HEPS由国家发展改革委批复立项,中国科学院高能物理研究所承担建设,2019年6月开建,建设周期6.5年。建成后,它将成为世界上亮度最高的第四代同步辐射光源之一,将面向航空航天、能源环境、生命医药等领域用户开放。2023年12月11日,HEPS主体设备安装闭环,储存环真空、注入引出、高频、低温、插入件、电源、束控、前端区等系统随即开启安装和调试。去年,HEPS直线加速器、增强器已满能量出束,通过工程指挥部验收。现在,储存环隧道完成了全环真空闭环,启动全环联调,将开启储存环束流调试新阶段。最后一个周期真空连接储存环隧道安装现场储存环隧道安装现场储存环全环贯通活动合影 ... PC版: 手机版:

封面图片

DUV光刻机和EUV光刻机的主要区别是激光光源。DUV光源波长为193纳米,分辨率差,而EUV光源波长为13.5纳米。圣地亚哥C

DUV光刻机和EUV光刻机的主要区别是激光光源。DUV光源波长为193纳米,分辨率差,而EUV光源波长为13.5纳米。圣地亚哥Cymer公司(在4SRanch边上)是生产EUV光源的唯一厂家,于2013年被阿斯麦用37亿美元收购成为其子公司。为EUV光刻机供货的500个厂商分属24个国家,都被拜登拉进去共同打压中国芯片产业。中国官媒声称美国越制裁越促进中国发展,有当年慈禧太后向所有列强宣战的勇气,

封面图片

中国光刻机“”弯道超车”

中国光刻机“”弯道超车” 真正的SSMB-EUV光源方案 加速器周长100~150米,输出EUV功率>1KW 美国的极限制裁极大的加速了中国EUV光刻机的研发速度。 中国目前采取的是一种全新的“技术路线方案” 目前中国有三条光刻机研发路线。 1.国外正统路线,也就是ASML的EUV光刻机路线。HW+上海光机所+宇量升,国家队,走500W LPP光源+复杂镜头组的技术路线。现在进度最快,技术复杂度相对最高,特别是超高功率、超高重复频率二氧化碳激光器技术难度非常高。进度保密 2.改进型路线。广东智能机器研究院(广智院)+华中科技大,他们在尝试一种采用分时高功率光纤激光器射击液态锡靶的方式绕开超高功率、超高重复频率二氧化碳激光器的技术路线。如果他们那个400路光纤激光器能够成功,将是使用二氧化碳激光器的LPP光源功率的数倍。何时成功还是未知。 3.颠覆式全新路线。清华大学主导的1千瓦级SSMB-EUV光源,直接把光刻机光源变成基础设施同步辐射光源。直接把光源变成类似工业园中的电力、蒸汽、纯水等可购买原料。比如:深圳产业光源系统规划了EUV光刻线站和EUV检测线站等合计四条光束线,六个实验站。 第三条。颠覆性技术路线如果全面成功,可以秒杀上面两条路线。光源外置、极大简化的光路直接把EUV光刻机变成体积大,但是成本相对较低的批量产品。且更匹配中国极高的基础设施建设能力!!!

封面图片

俄罗斯首台光刻机 真的制造成功了?

俄罗斯首台光刻机 真的制造成功了? 当时,IPF RAS计划在六年内打造出俄罗斯自产7nm光刻机的工业样机,2024 年将创建一台“Alpha机器”,2026创建"测试机",2026年~2028年俄罗斯本土光刻机将获得更强大的辐射源,改进的定位和进给系统,并将开始全面的工作,2028年,这些设备全面运行。时隔两年,俄罗斯所说的真的实现了首台光刻机正式制造成功并进入测试。有实际意义的突破据塔斯社报道,俄罗斯第一台能够生产最大350nm(行业一般说0.35μm)尺寸芯片的光刻机已经创建并正在测试中。俄罗斯联邦工业和贸易部副部长瓦西里·什帕克(Vasily Shpak)在CIPR期间向塔斯社报告了这一点。他表示,“我们组装并制造了第一台国产光刻机。作为泽廖诺格勒技术生产线的一部分,目前正在对其进行测试。”俄罗斯接下来的目标是在2026年制造可以支持130nm工艺的光刻机。去年10月有报道称,第一台俄罗斯国产130nm光刻机原型可能在2026年之前问世。再下一步,将是开发90nm光刻机。他说:"我们将继续逐步向90nm及以下迈进。因此,俄罗斯不会止步于此,同时已经在实施一项全面的电子工程项目。尽管350nm的芯片虽然被认为是大尺寸芯片,但仍具备一定实际的意义,可用于许多行业,包括汽车行业、能源和电信行业。欧盟此前在俄罗斯武器上发现大量民用芯片,包括洗衣机,洗碗机等家电用具,这也是无奈之举。而接下来,或许俄罗斯可以进而实现“洗衣机芯片”自由。网友也给出了俄罗斯未来的路线:优化一下,就能180nm,看产出,每小时出几片,套准精度3-sigma 多少纳米。加上double pattern,其他指标ok,就能90nm,65nm也有机会了。光源改进一下,i-line换ArF 193纳米,不就进28nm了吗?不过,目前还不太清楚俄罗斯所说的350nm(0.35μm)光刻机是哪种类型光刻机,此前俄媒曾提到过基于同步加速器和/或等离子体源”的无掩模X射线光刻机,而从目前来看350nm(0.35μm)的波段达到i线(365nm)。各个工艺节点和光刻技术的关,图源丨中泰证券350nm芯片,什么水平历史上,350nm(0.35μm)诞生于1995年,现在依然拥有产品应用,主要是一些不太刚需制程的特色工艺产品,比如模拟芯片、功率半导体、传感器或者低端MCU、军工产品。除此之外,其应用可能还包括各类FPV和“自杀小摩托”这些属于一次性用品,使用时间比较短。作为对比,半导体制程工艺发展史简单总结如下:1971年,10μm工艺是当时最高工艺,代表芯片是Intel 1103 DRAM、4004 CPU(1971)、8008 CPU(1972);1974年,步入6μm工艺,大名鼎鼎的Intel 8080便采用这一制程;1977年,3μm工艺开启元年,从此x86处理器Intel 8086(含8085、8088)正式诞生;1982年 1.5μm工艺用在Intel 80286上,1985年 1μm工艺用在Intel 80386上,1989年,0.8μm工艺用在Intel 80486上;1995年,0.35μm(也就是350nm)工艺开启元年,Pentium P54CS、IBM P2SC(1996)、IBM POWER3(1998)都采用了这一工艺;1997年,主节点为0.25μm工艺,开始引入国际半导体技术路线图(ITRS)主节点和半节点定义,即:1998年半节点220nm工艺,1999年主节点0.18μm工艺(180nm),2000年半节点150nm工艺;2001年,130nm是当时的主节点,典型芯片是130nm的奔腾3处理器,2002年半节点为110nm工艺;2004年,步入90nm元年,英特尔、英飞凌、德州仪器、IBM、联电和台积电基本都能达到90nm,典型芯片包括90nm的奔腾4处理器;2012年,制程步入22nm阶段,此时英特尔,联电,联发科,格芯,台积电,三星等厂商都具备生产能力;2015年联电止步于14nm,2017年英特尔卡在了10nm,2018年格芯放弃7nm,此时先进制程的战场只剩下台积电和三星;2019年6nm量产导入,2020工艺5nm开始量产,而国内也开始量产14nm芯片;2024年,随着英特尔开始重新重视制程技术,英特尔、台积电、三星正在争夺2nm的先发地位。当然,毕竟350nm(0.35μm)芯片性能较差,面对现代比较复杂的应用需求,使用过程中芯片热量会急剧增加,从而继续带来更大的性能损耗,因此在数字芯片中更多可能是将就用,比较追求性能的消费产品可能更是无法使用。难点还有很多当然,芯片制造也不是说有了光刻机就行了。《光刻技术六十年》中写道,在芯片制造的全流程中,整个过程涉及几十道光刻工艺,每一道光刻工艺之后紧接着是众多复杂的半导体IC平面加工工艺。这些工艺中的每一道又细分成多道工序,而每一道工序又由多个步骤组成,每一步骤都至关重要,不容有失。这有多难?就比如,看似最简单的基片表面处理和清洗步骤,也需要重复多次,其中一步出了问题,整个IC制造过程就全部报废。因此,每一步骤出问题的可能性被严格控制在0.000001%以下。由于每一步骤都是在前一步的基础上进行的,最终成品率是每一步成功率的乘积。若整个流程包含超过两千个步骤,即使每一步都能达到99%的成功率,最终生产出来的成品率也只有0。因此在芯片制造技术中,好的设备很关键,尤其是需要高精度的光刻机,但有了好的工艺设备后,人才是最关键的。在芯片制造技术中,最难的在于如何建立一个能够齐心协力的团队,这需要整个公司上上下下所有人都是最敬业的。世界上没有任何一个人为制造出来的东西,可以像芯片这样要求百分之百精准度。3月,Tomshardware就曾报道,受欧美制裁影响,俄罗斯本土最大芯片设计厂商贝加尔电子芯片制造只能更多的交由国内厂商,当地的芯片封装合作厂商的生产良率仅有50%。注意,这里并非生产良率,而是封装良率。如果晶圆制造厂、Foundry厂和封测厂三个站点的良率均为99%,则:总良率=99% X99% X 99%= 97%。所以,50%的封装良率切实影响着俄罗斯的芯片生产,因此,俄罗斯要突破的还有很多。最后还是要说,不要轻易取笑,毕竟有志者事竟成。而从从技术角度来看,俄罗斯也是在重新发明轮子。付斌丨作者 ... PC版: 手机版:

封面图片

下午察:中国拟建巨型芯片工厂?

下午察:中国拟建巨型芯片工厂? 香港《南华早报》星期一(9月25日)报道,中国正计划用一种新型粒子加速器光源,建造一座容纳多台光刻机的大型工厂,以实现芯片制造本土化。 报道称,中国计划建造的单个粒子加速器有两个篮球场大小,目前清华大学团队正和河北雄安新区政府讨论,为这一项目敲定建设地点。 报道还引述科学家称,这项技术可以让中国超越美国的制裁,并成为半导体芯片行业的新领导者。

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人