总结一下我自己在做模型训练时关注到的一些很喜欢的 AI 前沿探索者,以及工具和资源。

总结一下我自己在做模型训练时关注到的一些很喜欢的 AI 前沿探索者,以及工具和资源。 1. Stable Diffusion 入门推荐: 腾讯技术工程《开源图像模型Stable Diffusion入门手册》 推荐理由:目前总结的最好的,没有花里胡哨的内容,信息量大且系统,很难相信是直接开源的文章分享,反复读的文章之一了。 2. LoRA 角色模型训练: YouTube 频道 @Bernard Maltais 推荐理由:Kohya 训练脚本的作者,上下两集共90分钟讲解了 Lora 模型的训练,从数据集收集到处理到训练参数。建议这种教程能看开发者做的就看开发者做的,很多追热点的 up 经常为了图快没玩明白就出攻略,我跟着很多油管的教程操作,常被带进坑里…… 3. 微调风格模型训练: Twitter @Nitrosocke 推荐理由:Nitro 训练过很多非常棒的模型,他的 GitHub 页面有详细讲风格模型怎么训练的教程。他自己本身是设计师出身,在去年年底微调了几个很厉害的风格模型后,现在被 StabilityAI 挖走了。 4. ControlNet 插件研发用户推荐 Twitter @toyxyz 推荐理由:他做了利用 Blender 来辅助 AI 出图的免费插件,打通工作流 3D 辅助 AI 的第一人哈哈。最近他在研究的方向是 ControlNet 动画,总之是厉害、前沿又无私的开发者。 5. AI 放大工具推荐 Topaz Gigapixel:用过最好用的,可以批量放大,基本所有图片训练前我都会用这个过一遍 Upscayl:会增加细节,但是只能给常见物体增加细节 Gigagan:还没出,但看效果挺值得关注 #AI工作流 #AI的神奇用法

相关推荐

封面图片

总结一下我在做模型训练时关注到的一些很喜欢的 AI 前沿探索者,以及工具和资源。

封面图片

最近和朋友七黔在琢磨基于 SDXL 训练的 AI 美甲工具,有两件让我特别兴奋的事情!

最近和朋友七黔在琢磨基于 SDXL 训练的 AI 美甲工具,有两件让我特别兴奋的事情! 第一是,除了穿戴甲 LoRA在 SDXL 上训练效果比1.5好了特别多以外,还可以通过训练 LoRA 直接实现美甲上手效果!!! 另一个是可以通过最新的 ControlNet 模型 IP-Adapter 根据参考图直接提取图像设计出美甲款式,这一点也太有想象空间了。 我们把 demo 部署了一下,如果感兴趣可以试试看: #AI工作流

封面图片

《耗时7天,终于把15种ControlNet模型搞明白了!》

《耗时7天,终于把15种ControlNet模型搞明白了!》 各位好,我是吴东子 这篇文章是SD三部曲的第三篇「ControlNet的终极攻略」 前面我们说到如果想真正把SD应用起来,最重要的两个功能是:Lora和ControlNet Lora负责把想要画面的“主体”或“场景”炼制成模型 ControlNet负责更好地“控制”这个“模型”或画面 Lora教程之前已经出了,感兴趣的朋友可以去翻看 ControlNet一共有15种模型,每种模型对应不同的采集方式,再对应不同的应用场景,每种应用场景又有不同的变现空间 我花了一周时间彻底把15种模型研究了一遍,跑了一次全流程,终于写完了本文 文章包含了ControlNet的功能介绍,安装方法,模型采集方式,实操案例,以及下面几个目前很好玩的功能 1.动漫转真人 2.真人转动漫 3.控制人物姿势、表情 4.线稿AI上色 5.固定主角 大家只要跟着一步一步操作,一定能学会 另外,需要用到的整合包和模型也都给大家打包好放在网盘(链接在文章末尾) 花了很多时间才整理出来,希望对你有帮助

封面图片

字节发布ResAdapter,可以解决SD生成超大图片和非训练分辨率图片时的肢体异常以及画面崩坏问题。

字节发布ResAdapter,可以解决SD生成超大图片和非训练分辨率图片时的肢体异常以及画面崩坏问题。 同时可以与现有的IPadapter以及Controlnet模型兼容。 项目简介: 近期,像Stable Diffusion这样的文本到图像模型和DreamBooth、LoRA等个性化技术的发展,让我们能够创造出既高质量又充满创意的图像。但这些技术在生成超出它们训练时所用分辨率的图像时,往往会受到限制。 为了突破这一难题,我们推出了一种新型工具分辨率适配器(ResAdapter)。 它是一种专门为扩散模型(比如Stable Diffusion和个性化模型)设计的适配器,能够生成任何分辨率和长宽比的图像。与其它多分辨率生成方法不同,ResAdapter能直接生成动态分辨率的图像,而不是在后期处理中调整静态分辨率的图像。这种方法使得图像处理变得更加高效,避免了重复的去噪步骤和复杂的后期处理流程,显著缩短了处理时间。 在不包含任何训练领域风格信息的情况下,ResAdapter利用广泛的分辨率先验,即使只有0.5M的容量,也能为个性化扩散模型生成不同于原训练领域的高分辨率图像,同时保持原有风格。 大量实验显示,ResAdapter在提高分辨率方面与扩散模型配合得天衣无缝。此外,更多的实验表明,ResAdapter可以与ControlNet、IP-Adapter和LCM-LoRA等其他模块兼容,适用于创建不同分辨率的图像,也可以整合进如ElasticDiffusion这样的多分辨率模型中,高效生成更高清晰度的图像。 项目页面:

封面图片

一个懒人 LoRA 制作指南,手把手教你用 OneTrainer 训练自己的 AI 绘画模型,无需深入理论,轻松掌握关键步骤。

一个懒人 LoRA 制作指南,手把手教你用 OneTrainer 训练自己的 AI 绘画模型,无需深入理论,轻松掌握关键步骤。 作者是用XL生成的图片,你可以用MIdjoureny生成效果比较好。 我完整翻译了内容,并且重新整理了适合推特阅读的版本,或者你可以在下面看完整翻译的内容: - 1⃣ LoRA 模型制作教程 作者作为一名 LoRA 模型制作的新手,通过自己的学习实践,总结了一份简明扼要的制作教程。 这份教程不涉及太多理论知识,而是直奔主题,手把手教初学者如何训练自己的 LoRA 模型。 作者坦诚分享了自己从最初尝试 Embedding 和 LoRA 时遇到的问题,以及后来找到的解决方法,为读者提供了宝贵的经验参考。 所需工具介绍 要制作 LoRA 模型,需要准备一些必要的工具。作者推荐使用自己喜欢的模型和图像生成工具,他个人使用的是 StableSwarmUI 和 GhostXL 模型。 此外,还需要一个训练工具,作者选择了 OneTrainer,因为有人说它比另一个常用的工具 Kohya 更易用。作者还提到,训练时如果需要将 SDXL 格式的图像转换为 SD 格式,需要在设置中开启分辨率覆盖选项。 2⃣ LoRA 模型制作步骤 作者将 LoRA 模型的制作过程分为三个主要步骤: 第一步是用现有的模型生成大量高质量的图像作为训练数据; 第二步是人工检查挑选图像,剔除所有质量不合格的; 第三步是使用 OneTrainer 进行训练,调整必要的参数设置。 作者还特别提到,在训练时如果需要将 SDXL 格式的图像转换为 SD 格式,一定要记得开启分辨率覆盖选项,否则训练会出问题。 训练参数调整心得 作为一名新手,作者在调整训练参数时主要参考了一份网上的指南。 他尝试调整了 Lora 设置中的 rank 参数,将其从默认的 16 改为 32,解决了模型训练中遇到的问题。作者分享了这份参数调整指南的链接,供其他学习者参考。 3⃣ 作者的训练数据集分享 为了帮助更多学习者,作者慷慨地分享了自己完整的训练图像数据集,其中还包含了他使用的 OneTrainer 配置文件。这些数据可供其他 LoRA 制作人下载参考和使用。数据集已经过作者的筛选,图像质量有保证。 4⃣ 训练成果展示

封面图片

作者展示了几张用自己训练好的 LoRA 模型生成的图像作为成果展示。这些图像的质量相当不错,证明作者的训练过程是成功的。作者表示

作者展示了几张用自己训练好的 LoRA 模型生成的图像作为成果展示。这些图像的质量相当不错,证明作者的训练过程是成功的。作者表示,训练好的模型可以根据输入的提示词和参数,生成特定风格和效果的图像。 完整教程:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人