LLM得上下文越来越长,模型搜寻信息的能力却未必线性提升

LLM得上下文越来越长,模型搜寻信息的能力却未必线性提升 总体而言,模型会更注意开头的文本 准确性方面,有时上下文更长的Claude100k表现不如 ChatGPT16k 利用ChatDoc/ChatPDF 来获取信息并帮助模型筛选信息块、或重新排序信息块也能提升效果 最后,价格高贵的GPT4效果拔群

相关推荐

封面图片

百川智能发布Baichuan2-192K大模型 | 上下文窗口长度高达192K,是目前全球最长的上下文窗口,能够一次处理约35万

百川智能发布Baichuan2-192K大模型 | 上下文窗口长度高达192K,是目前全球最长的上下文窗口,能够一次处理约35万个汉字。 官方宣称:Baichuan2-192K不仅在上下文窗口长度上超越Claude2,在长窗口文本生成质量、长上下文理解以及长文本问答、摘要等方面的表现也全面领先Claude2。 10项长文本评测7项取得SOTA,全面领先Claude2 Baichuan2-192K在Dureader、NarrativeQA、LSHT、TriviaQA等10项中英文长文本问答、摘要的评测集上表现优异,有7项取得SOTA,显著超过其他长窗口模型。 此外,LongEval的评测结果显示,在窗口长度超过100K后Baichuan2-192K依然能够保持非常强劲的性能,而其他开源或者商用模型在窗口长度增长后效果都出现了近乎直线下降的情况。Claude2也不例外,在窗口长度超过80K后整体效果下降非常严重。 Baichuan2-192K正式开启内测,已落地法律、媒体等诸多真实场景 Baichuan2-192K现已正式开启内测,以API调用的方式开放给百川智能的核心合作伙伴,已经与财经类媒体及律师事务所等机构达成了合作,将Baichuan2-192K全球领先的长上下文能力应用到了传媒、金融、法律等具体场景当中,不久后将全面开放。

封面图片

谷歌发布了Gemini 1.5模型,最主要的升级是支持了高达 100 万的上下文长度,秒杀了所有模型。

谷歌发布了Gemini 1.5模型,最主要的升级是支持了高达 100 万的上下文长度,秒杀了所有模型。 Gemini 1.5基于Transformer和MoE架构的研究和工程创新,提高了训练和服务的效率。 Gemini 1.5 Pro是一个中等规模的多模态模型,适用于多种任务,并引入了在长上下文理解方面的实验性特性。 它标准的上下文窗口为128,000个Token,但现在已经可以通过AI Studio和Vertex AI向开发者和企业客户提供高达100万个Token的私人预览。 1.5 Pro 可以一次处理大量信息包括 1 小时的视频、11 小时的音频、包含超过 30,000 行代码的代码库或超过 700,000 个单词。 Gemini 1.5 Pro在文本、代码、图像、音频和视频评估的综合面板上的性能超过了Gemini 1.0 Pro,并且与1.0 Ultra在同样的基准测试上表现相当。 此外,Gemini 1.5 Pro在进行长上下文窗口的测试中表现出色,在NIAH评估中,它在长达100万个Token的数据块中99%的时间内找到了嵌入的文本。 了解更多:#context-window

封面图片

企业定制LLM应用构建方案,将内部知识库作为模型的上下文,即作为提示的一部分,通过Fine-Tuning开源LLM,或者检索增强

企业定制LLM应用构建方案,将内部知识库作为模型的上下文,即作为提示的一部分,通过Fine-Tuning开源LLM,或者检索增强生成(RAG)的方式。性能取决于许多因素,如块的大小、块之间的重叠、嵌入技术等 |

封面图片

(Retrieval Augmented Generation)是一种将检索到的信息作为上下文提供给大语言模型来产生回答的技术。

(Retrieval Augmented Generation)是一种将检索到的信息作为上下文提供给大语言模型来产生回答的技术。它是2022年后最流行的大语言模型系统架构之一,有很多产品都是基于RAG构建的。LangChain和LlamaIndex是两个流行的开源RAG库。 RAG由搜索和大语言模型提示组成,可以看作是搜索+大语言模型的结合。基本流程包括:将文本分块,用Transformer Encoder模型将这些块嵌入为向量,将向量放入索引,构造提示,让大语言模型基于检索到的上下文来回答用户查询。 本文详细介绍和说明了RAG中的各种高级技术和算法,以及对这些技术的参考实现,旨在帮助开发者更深入地了解RAG技术。

封面图片

MPT-7B 开源商业可用LLM的新标准

MPT-7B 开源商业可用LLM的新标准 - 包括base和三个微调模型,instruct,chat,写作 - 其中写作模型支持65k的上下文!是GPT4的两倍。(甚至支持到 84k 。) - 包含了开源代码训练 - 在基准测试中达到了 LLaMA-7B 的水平。 官方介绍:

封面图片

该模型在基础能力评估中与 Meta-Llama3-70B 不相上下。支持 32K Token 的上下文长度。提供包括英语、中文、

该模型在基础能力评估中与 Meta-Llama3-70B 不相上下。支持 32K Token 的上下文长度。提供包括英语、中文、法语、西班牙语、日语、韩语、越南语等多种语言的多语言支持。 模型下载: 标签: #通义千问 #AI 频道: @GodlyNews1 投稿: @GodlyNewsBot

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人