我们可以从全球健康中学习很多关于如何使AI更加公平的知识。主要的教训是产品必须根据使用者的需求进行定制。我提到的医疗信息应用就是

我们可以从全球健康中学习很多关于如何使AI更加公平的知识。主要的教训是产品必须根据使用者的需求进行定制。我提到的医疗信息应用就是一个很好的例子:在巴基斯坦,人们常常互相发送语音信息,而不是发送文本或电子邮件。因此,创建一个依赖于语音命令而不是键入长查询的应用程序是有意义的。而且,该项目正在用乌尔都语设计,这意味着不会有任何翻译问题。 「我们可以从全球健康中学习很多关于如何使AI更加公平的知识。重要经验是产品必须根据将要使用它的人进行定制。」 如果我必须做一个预测,在像美国这样的高收入国家,我猜我们距离普通人群大规模使用AI的时间大约是18-24个月。在非洲国家,我预计在大约三年左右会看到相当的使用水平。这仍然是一个差距,但比我们在其他创新中看到的滞后时间要短得多。 盖茨基金会的核心工作一直是通过创新来缩小这个差距。当我想到AI如何被用来更快地将改变游戏规则的技术推广到需要它们的人们那里时,我感觉就像圣诞节早晨的孩子。这是我明年将花很多时间思考的事情。 长期期待的「营养不良」突破即将到来 在盖茨基金会,我们愿意进行大胆的投注。我们知道,并非每一次风险都会有回报但这没关系。我们的目标不仅仅是逐步进步。我们的目的是将我们的努力和资源投入到重大项目中,如果成功,这些项目可能会挽救和改善生命。 当你进行一次大胆的赌注时,你通常需要等待很长时间才能看到它是否会成功。当你最终意识到它将会成功时,那种感觉是难以置信的。我们即将迎来我最期待的一个大胆赌注之一的那一刻:利用我们对肠道微生物组的理解来预防和治疗营养不良。 我经常被问到,如果我只能解决一个问题,我会选择什么。我的回答总是营养不良。这是世界上最大的健康不平等问题,影响着大约四分之一的儿童。如果你在生命的前两年内没有获得足够的营养,你就无法正常发育无论是身体上还是心理上。通过解决营养不良问题,我们可以减少导致儿童死亡的最大因素之一。 图5中的所有孩子都是9岁,但中间的三个孩子由于生长迟缓,身高远低于他们年龄的平均水平。 营养不良的原因比单纯的缺乏足够食物要复杂得多。大约15年前,研究人员开始怀疑生活在你肠道中的细菌你的微生物组在营养不良率较高的地方,口服儿童疫苗(如脊髓灰质炎)效果不佳后,可能在其中起作用。很明显,有些东西阻止了它们被正确吸收。 这种怀疑在2013年得到了证实,当时生物学家杰夫·戈登(Jeff Gordon)发表了一项研究马拉维婴儿双胞胎的微生物组的开创性研究。它表明,你的微生物组不仅仅是你健康的副产品,而是其决定因素。这是我们第一个大的线索,我们可能可以通过改变肠道微生物组来减少营养不良。 在过去的10年中,我们对肠道微生物组的了解比之前1000年的了解还要多。我们发现,生活在你肠道中的细菌可能处于一种功能失调的状态,引起炎症,使你无法吸收营养。我们还发现,如果你及早介入,可以对肠道微生物组进行最大的改善。 在人类发展中首次出现的肠道细菌之一叫做B. infantis。它有助于将母乳中的糖分解为身体生长所需的营养物质。反过来,母乳为B. infantis和你整个肠道微生物组提供食物。这是一个良性循环。但如果婴儿一开始就没有足够的B. infantis细菌,他们可能无法从母乳中吸收足够的营养来支持其他必要肠道细菌的生长。 几乎不可能克服这种不足。你可以获得世界上所有的营养食品,但这并不重要。如果你的肠道生长路径一开始就被扰乱了,你可能永远无法吸收你所需的所有营养。 但如果我们可以给处于风险中的婴儿提供B. infantis作为益生菌补充剂呢?我们能否及早介入,将他们引导到正确的路径上? 这就是基金会合作伙伴多年来一直在研究的内容我们终于接近答案。正在进行的三期试验涉及一种可以添加到母乳中的B. infantis粉末补充剂。参与的有来自五个国家的16,000名婴儿,研究人员正在跟踪每一个人,以确保这种益生菌既安全又有效。 到目前为止的结果是惊人的:给婴儿喂食这种益生菌有助于他们将微生物组转移到积极状态,这样他们就可以长大并发挥他们的全部潜力。这可能是预防营养不良的一个极大帮助工具。 虽然试验仍在进行中,但基金会合作伙伴也在尝试弄清楚如何降低生产成本。我们必须确保成本足够低廉,以便在营养不良率最高的低收入国家广泛使用。 下一步是(希望)更广泛的监管批准、规模化、高质量和可靠的生产。世界卫生组织已经发布了如何使用这些益生菌的指南,这是一个很大的障碍。我对正在进行的其他形式研究也感到乐观,比如直接给婴儿喂食的液体版本,而不是混入母乳中。 我还对在婴儿出生前改善肠道微生物组的可能性感到兴奋。新的研究发现,婴儿的微生物组与其母亲的微生物组相连。在子宫内解决炎症问题可以为女性、胎盘和发育中的胎儿带来额外的好处。 如果我们能给预产期的母亲一种益生菌补充剂,让她的孩子从出生的第一天开始就拥有健康的肠道呢?目前还不清楚这些活性生物疗法会是什么样子,或者如何使用,因为这还处于非常早期的研究阶段。但是研究显示,健康的微生物群落可能帮助婴儿在怀孕后期每天增加5克的体重。 在过去的十年里,儿童健康领域的发展速度和范围超出了我一生的预期。看到微生物群体从一个完全无法看见的东西变成了解决世界上最大的健康不平等问题的关键策略,这真是令人惊叹。我迫不及待地想看到我们将在未来一年里学到更多的知识,并利用这些知识来拯救生命。 气候对话已进入一个新时代 当你把国家元首、学生活动家、商业领袖和慈善家聚集在一起,让他们共同努力解决气候危机时会发生什么?结果是,取得了很大的进步。 本月早些时候,我在迪拜的COP28会议上度过了几天既富有成效又令人敬畏的时光。这是我参加的第三次COP我也参加了巴黎和格拉斯哥的会议。 这些会议是跟踪气候斗争随时间演变的绝佳方式。年轻气候活动家的热情总是让我感到震撼。特别有趣的是,随着更多人在世界各地看到和经历极端天气事件,气候讨论的总体强度多年来一直在上升。 我希望这种强度将驱使我们投资更多的创新,以帮助那些受气候变化影响最严重的人尤其是生活在赤道附近的贫穷农民。他们值得我们关注,因为他们对这个问题毫无贡献,但它确实威胁到他们的生命。在这方面,今年COP上更加关注适应性的情况令人振奋,包括专门用一天时间讨论健康问题。 这些枣树能够处理咸水,所以它们可以在更多地方生长。 迪拜COP会议期间,国际生物盐地农业中心的塔里法·阿尔·扎比博士展示了她在盐碱环境中种植作物的研究。(图8) 我还被气候讨论变得多么精细和微妙所打动。我在迪拜看到的最大变化是减缓讨论的广泛性特别是清洁能源。 在以前的COP会议上,很多重点都放在扩大风能和太阳能上。在这次COP会议上,人们更多地讨论了农业和制造业等贡献大量排放的其他行业。(我以前写过我在减少和抵消自己排放方面所做的工作。)很明显,领导们认真考虑如何建立一个绿色能源的未来,这个未来将从许多不同的来源中汲取。风能和太阳能仍然是这个未来的关键部分,但领导者们现在认识到,当太阳不照耀或风不吹时,你需要用更可靠的东西来补充它们。 这种补充越来越多地包括了核能。 在过去的一年里,我注意到了对核能整体接受度的重大转变。过去,当我提起核能时,我经常不得不解释为什么核能不是许多人想象的那样可怕。但最近,我花了更多的时间解释我们如何扩大这项技术,而不是为什么我们需要它。我很高兴看到近二十个国家在COP承诺到2050年将他们的核能力量增加三倍。 我认为这种转变的一个原因是实际需要。核能是唯一一种可以在地球上几乎任何地方,日夜、每个季节都可靠提供无碳能源的能源,而且已被证明在大规模上行之有效。随着各国在气候计划上取得进展,越来越多的人意识到,我们可能需要核能来满足世界对能源不断增长的需求,同时消除碳排放。 我也将这种转变部分归因于下一代核技术取得的进展。 几十年来,核技术一直停滞不前。像切尔诺贝利和三哩岛这样的高调灾难凸显了核能带来的真实风险。而我们没有着手解决这些问题,只是停止了推进这一领域的努力。幸运的是,这种情况正在改变。 我对2008年我创立的公司TerraPower所创建的方法感到乐观。今年早些时候,我参观了怀俄明州凯默尔的第一家TerraPower工厂的未来所在地。当这个工厂在2030年开放时可能在2030年它将是世界上最先进的核设施,而且它将比传统反应堆更安全,产生的废物更少。今年早些时候,我参观了凯默尔的诺顿工厂。计划是,如果工人们愿意,他们都可以在TerraPower工厂找到工作。 许多人仍然(可以理解地!)对核能的经济性表示怀疑,因为建造新工厂非常昂贵。我的希望是,凯默尔工厂将消除其中一些疑虑。在建设高峰期,该设施将为该镇带来1600个建筑工作岗位。一旦运行起来,它将雇佣200至250人包括计划不久后关闭的当地煤炭厂的工人。 2024年,凯默尔的钠测试设施将开始建设。(你可以阅读更多关于钠扮演的超酷角色的信息。)这是TerraPower继续向建设核设施迈进的重要一步。 TerraPower使用的是裂变反应堡,这是大多数人想到核电站时会想到的。它通过分裂原子来产生能量。但科学家们也在研究一种全新类型的反应堆,它通过将原子聚合在一起来产生能量。这个过程叫做聚变,这也是太阳发电的过程。 大约一年前,劳伦斯·利弗莫尔国家实验室的科学家们实现了第一个产生的能量超过输入能量的聚变反应。这是一个巨大的成就,也是一个巨大的进步。这项技术仍处于研发阶段,但有很多理由继续保持乐观。(图7显示了1986年的一次聚变实验。) 看到零排放技术从想法变为现实总是令人兴奋的。我去COP旅行的一大亮点就是在科技创业区域四处走走。在那里的大多数公司在八年前,当世界在巴黎COP宣布致力于气候创新时,还不存在。

相关推荐

封面图片

研究人员发现抗生素耐药性的新因素 挑战传统观点

研究人员发现抗生素耐药性的新因素 挑战传统观点 这一发现挑战了抗生素耐药性主要是由于过度使用抗生素的传统观点,凸显了"隐性饥饿"在这一全球健康问题中的作用。这项研究强调,需要采取全面的解决方案来解决营养不良问题及其对抗生素耐药性的影响。这项研究的重点是了解维生素 A、B12、叶酸、铁和锌等关键微量营养素含量不足对消化道内多种细菌、病毒、真菌和其他微生物的影响。他们发现,这些缺陷导致小鼠肠道微生物群发生重大变化,最明显的是已知为机会性病原体的细菌和真菌数量急剧增加。重要的是,微量营养素缺乏的小鼠还表现出与抗生素耐药性有关的基因富集度更高。"在有关全球抗生素耐药性的讨论中,微量营养素缺乏一直是一个被忽视的因素,"UBC医学遗传学系、儿科系和不列颠哥伦比亚省儿童医院研究所博士后研究员Paula Littlejohn博士说。"这是一个重大发现,因为它表明营养缺乏会使肠道环境更有利于抗生素耐药性的产生,而这正是全球健康的一个主要问题。"作为一种防御机制,细菌天然拥有这些基因。某些情况下,如抗生素压力或营养压力,会导致这些机制的增加。这就构成了一种威胁,可能会使许多强效抗生素失效,导致未来普通感染变得致命。抗生素耐药性通常被归咎于抗生素的过度使用和滥用,但利特尔约翰博士和她在加拿大卑诗大学的同事们的研究表明,微量营养素缺乏的"隐性饥饿"是另一个重要因素。利特尔约翰博士说:"全球约有3.4亿五岁以下儿童患有多种微量营养素缺乏症,这不仅会影响他们的生长,还会显著改变他们的肠道微生物群。我们的研究结果尤其令人担忧,因为这些儿童经常因营养不良相关疾病而服用抗生素。具有讽刺意味的是,由于潜在的微量营养素缺乏,他们的肠道微生物组可能会产生抗生素耐药性。"这项研究为了解生命早期微量营养素缺乏的深远影响提供了重要见解。研究强调,需要采取综合战略来解决营养不良问题及其对健康的连锁反应。解决微量营养素缺乏问题不仅仅是为了克服营养不良,它也可能是对抗全球抗生素耐药性祸害的关键一步。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

南洋理工大学研究人员发明人造"蠕虫肠道"吞噬塑料垃圾

南洋理工大学研究人员发明人造"蠕虫肠道"吞噬塑料垃圾 南洋理工大学的科学家们用不同的塑料食物喂养蠕虫,并从它们的肠道中提取微生物组,将它们放在烧瓶中培养,形成人工"蠕虫肠道"。图片来源:新加坡国立大学南洋理工大学土木与环境工程学院(CEE)和新加坡环境生命科学工程中心(SCELSE)的研究人员通过用塑料喂养蠕虫并培养其内脏中的微生物,展示了一种加速塑料生物降解的新方法。先前的研究表明,面包虫 - 通常作为宠物食品出售、因其营养价值而被称为"超级蠕虫"的黑甲虫的幼虫能够以塑料为食而存活,因为其肠道中含有能够分解常见类型塑料的细菌。然而,由于进食和虫体维持的速度较慢,将它们用于塑料处理一直不切实际。现在,南洋理工大学的科学家们展示了一种克服这些挑战的方法,他们分离出蠕虫的肠道细菌,利用它们来完成这项工作,而无需大规模繁殖蠕虫。(左起)南洋理工大学研究团队成员包括研究员 Sakcham Bairoliya 博士、曹斌副教授和研究员 Liu Yinan 博士。资料来源:新加坡国立大学南洋理工大学电子工程学院副教授、南洋环境科学与工程学院首席研究员曹斌说:"一只蠕虫一生只能消耗几毫克的塑料,因此可以想象,如果我们要依靠它们来处理塑料垃圾,需要多少蠕虫。我们的方法将蠕虫从等式中剔除,从而消除了这种需求。我们的重点是提高蠕虫肠道中有用微生物的数量,并建立一个能够有效分解塑料的人工'蠕虫肠道'"。这项研究最近发表在《国际环境》杂志上,与南洋理工大学 2025 五年战略计划中促进创新并将研究成果转化为造福社会的实际解决方案的承诺相一致。开发人造蠕虫肠道为了开发他们的方法,南洋理工大学的科学家们给三组超级蠕虫喂食了不同的塑料食物高密度聚乙烯(HDPE)、聚丙烯(PP)和聚苯乙烯(PS)为期 30 天。对照组喂食燕麦片。北大科学家之所以选择这些塑料,是因为它们是世界上最常见的塑料之一,用于食品盒和洗涤剂瓶等日常用品。高密度聚乙烯是一种以抗冲击性强、不易分解而著称的塑料。在这些蠕虫内脏中发现的细菌可以分解塑料。资料来源:南洋理工大学在给蠕虫喂食塑料后,科学家从它们的肠道中提取了微生物组,并将它们放在装有合成营养物和不同类型塑料的烧瓶中培养,形成了人工"蠕虫肠道"。在室温下,让微生物组在烧瓶中生长六周。增加塑料降解细菌科学家们发现,与对照组相比,装有喂食塑料的蠕虫肠道微生物群的烧瓶中,塑料降解菌显著增加。此外,与直接喂给蠕虫的塑料上的微生物相比,在烧瓶中塑料上定植的微生物群落更简单,更适合特定类型的塑料。当微生物群落更简单且针对特定类型的塑料时,在实际应用中就有可能更有效地降解塑料。该研究的第一作者、中欧和东欧环境与工程学院研究员刘一楠博士说:"我们的研究是首次成功尝试从喂食塑料的蠕虫肠道微生物组中培养塑料相关细菌群落。通过将肠道微生物组置于特定条件下,我们能够提高人工'蠕虫肠道'中塑料降解细菌的丰度,这表明我们的方法是稳定的,可以大规模复制。"研究人员说,他们的概念验证为开发利用蠕虫肠道微生物群处理塑料垃圾的生物技术方法奠定了基础。下一步,研究人员希望了解超级蠕虫肠道中的细菌如何在分子水平上分解塑料。了解这一机制将有助于科学家们在未来设计塑料降解细菌群落,从而高效地分解塑料。编译自:ScitechDaily ... PC版: 手机版:

封面图片

Cell子刊:你身体上的微生物群就像指纹一样独一无二

Cell子刊:你身体上的微生物群就像指纹一样独一无二 这是科学家对86人的肠道、口腔、鼻子和皮肤微生物群进行详细研究后得出的结论。在六年的时间里,在每个人的微生物群中存活得最好的细菌是那些对个人最特殊的细菌,而不是整个人群共有的细菌。“我们的研究结果强调了这样一种观点,即我们每个人的体内都有个性化的微生物组,这对我们来说是特殊的,你的基因、饮食和免疫系统都在塑造这个生态系统。”斯坦福大学医学院遗传学教授Michael Snyder博士说。这项新研究由Michael Snyder与George Weinstock(2023年去世)合作领导完成,这是美国国立卫生研究院综合人类微生物组项目的一部分,并在线发表在《细胞宿主与微生物》杂志上。该研究还发现了微生物组与健康之间的几种相关性:例如,2型糖尿病患者的微生物组不太稳定,多样性也较差。“我们认为,随着胰岛素抵抗,血液中脂质、蛋白质和其他代谢物的改变会改变微生物群可利用的营养物质,并影响这些细菌的生长,”遗传学博士后学者、该论文的第一作者Xin Zhou博士说。长期跟踪科学家们最近对人类微生物群在健康和疾病中的作用有了新的认识。但是,微生物群的庞大规模一个普通人体内大约有39万亿个微生物,以及它不断变化的事实,使得研究变得困难。研究人员一直在努力确定是否存在一种理想的微生物组组成,以及改变某人的微生物是否可以减轻疾病。这组研究人员追踪人们的微生物组长达六年,希望更好地了解个体体内的微生物是如何随着短期感染或慢性疾病的发作而变化的。他们每季度从86名年龄在29岁到75岁之间的人的粪便、皮肤、口腔和鼻子中收集微生物组样本。当参与者患有呼吸道疾病、接种了疫苗或服用了抗生素时,在五周的时间里,研究人员额外采集了三到七个样本。每个微生物组样本都进行了基因测序,以揭示其所含的细菌。与此同时,研究人员收集了大量关于参与者健康的其他临床数据,以研究各种因素如何与微生物组的变化相关。研究人员总共分析了5432个生物样本,产生了118,124,374个测量值。Snyder说:“在这么长的一段时间里,研究来自不同身体部位的微生物,让我们第一次把整个微生物群看作一个单一的流体系统。”注重稳定性这项新研究证实了之前的研究发现,揭示了在健康人的微生物组中经常发现的少数细菌,以及在感染和其他疾病期间人体微生物组的显著变化。然而,比单个细菌类型更能说明问题的是微生物组的稳定性。在健康时期,一个人的微生物组很少发生剧烈变化。在感染或糖尿病的发展过程中,构成微生物组的细菌波动更大。“我们发现,当你生病时,比如感冒,你的微生物群会发生这种暂时的变化;它变得非常失调,对于糖尿病来说,这种特征在很多方面都是一样的,除了它是长期的而不是暂时的。”Zhou说。当研究人员专注于哪些微生物在多年的过程中最有可能发生变化时,他们惊讶地发现,对个体来说最特殊的细菌是最稳定的。Snyder说:“很多人会怀疑我们之间共有的细菌是最重要的,因此也是最稳定的。我们发现了完全相反的情况个人微生物群是最稳定的。这进一步表明,我们的个人微生物群与其他人的个人微生物群不同,对我们的健康至关重要。这是有道理的,因为它们都有不同的健康基线。”数据带来了另一个惊喜:身体不同部位的微生物组是高度相关的。即使存在不同类型的细菌,当一个身体部位的微生物群发生变化时,其他部位也会发生变化。例如,如果在呼吸道感染开始时鼻腔细菌发生变化,肠道、口腔和皮肤微生物也会迅速开始发生变化。当肠道细菌随着糖尿病发生变化时,皮肤、口腔和鼻子上的细菌也会发生变化。与健康的联系根据整个研究过程中采集的血液样本,研究小组怀疑免疫系统是连接身体不同部位微生物的共同纽带,也是连接微生物群整体健康的纽带。血液中某些免疫蛋白的水平随着微生物群的变化而同步变化。此外,血脂血液中的脂肪也与微生物群稳定性的变化有关,这解释了与糖尿病的一些联系。该小组指出了几个影响微生物群形成的环境因素:例如,微生物随着季节的变化而发生可预测的变化,可能是由于湿度和阳光水平的变化以及新鲜食物的供应。但是这些环境因素,包括饮食,仍然不能解释人与人之间的差异。研究人员说,新的数据否定了存在一个黄金标准的微生物群的想法,即每个人都应该努力达到最佳健康状态。“相反,我们正在朝着这样一个想法前进,即我们拥有一个个人微生物组,它对我们自己的代谢和免疫健康非常重要。我们的新陈代谢和免疫健康也会极大地影响我们的微生物群它们都是联系在一起的。人与人之间的微生物组差异很大,你如何喂养它,它接触到什么,可能会对你的健康产生重大影响,我们还需要从很多方面解决这个问题。”Snyder说。 ... PC版: 手机版:

封面图片

: 肠道微生物有助于消化食物,通过影响免疫、代谢和神经系统维持人体健康。人类的部分肠道微生物历史相当悠久,在其它灵长类动物身上

-- : 肠道微生物有助于消化食物,通过影响免疫、代谢和神经系统维持人体健康。人类的部分肠道微生物历史相当悠久,在其它灵长类动物身上都能找到,这意味着它们源自于共同的祖先。随着人类涌入城市生活,。这一情况可能会影响道人类健康。城市生活改变了饮食、抗生素的使用以及卫生条件的改善,都可能是人类肠道微生物消失的原因。研究人员分析对比了灵长类动物以及人类的肠道微生物,发现人类失去了黑猩猩等灵长类动物中发现了 种微生物中的 种,其中部分是在几千年前消失的,部分是在近期消失的,城市居民损失最多。

封面图片

哈佛和麻省理工学院科学家发现肠道中能破坏胆固醇的微生物

哈佛和麻省理工学院科学家发现肠道中能破坏胆固醇的微生物 研究发现,在胆固醇水平降低的人群中,有多种细菌能代谢胆固醇。肠道微生物群的变化与一系列疾病有关,如 2 型糖尿病、肥胖症和炎症性肠病。现在,麻省理工学院和哈佛大学布罗德研究所以及麻省总医院的一个研究小组发现,肠道中的微生物也可能影响心血管疾病。在发表于《细胞》(Cell)杂志的一项研究中,研究小组确定了在肠道中消耗胆固醇的特定细菌种类,它们可能有助于降低人体内的胆固醇和心脏病风险。拉姆尼克-泽维尔实验室、布罗德代谢组学平台的成员和合作者分析了弗拉明汉心脏研究(Framingham Heart Study)1400 多名参与者的代谢物和微生物基因组。研究小组发现,一种名为"颤螺旋菌"(oscillibacter)的细菌会吸收并代谢周围环境中的胆固醇,肠道中这种微生物含量较高的人胆固醇水平较低。他们还确定了这种细菌可能用来分解胆固醇的机制。这些结果表明,以特定方式操纵微生物组的干预措施有朝一日可能有助于降低人体内的胆固醇。这些发现还为更有针对性地研究微生物组的变化如何影响健康和疾病奠定了基础。泽维尔是布罗德研究所的核心成员、免疫学项目主任和传染病与微生物组项目联合主任。他还是哈佛医学院和麻省总医院的教授。泽维尔实验室的博士后研究员李晨皓和研究科学家马丁-斯特拉扎尔是这项研究的共同第一作者。在过去的十年中,其他研究人员发现了肠道微生物组的组成与心血管疾病因素之间的联系,如人的甘油三酯和餐后血糖水平。但科学家们还无法针对这些联系采取治疗措施,部分原因是他们对肠道内的代谢途径缺乏全面的了解。在这项新研究中,布罗德团队更全面、更详细地了解了肠道微生物对新陈代谢的影响。他们将枪式元基因组测序技术与代谢组学技术相结合,枪式元基因组测序技术能分析样本中所有微生物的DNA,代谢组学技术能测量数百种已知和数千种未知代谢物的水平。他们利用这些工具研究了弗雷明汉心脏研究的粪便样本。斯特拉扎尔说:"项目成果强调了高质量、经过整理的患者数据的重要性。这使我们能够注意到那些非常微妙且难以测量的效果,并直接对其进行跟踪。"这种方法发现了微生物与代谢特征之间的 16000 多种关联,其中有一种关联特别强烈:与缺乏相关属种细菌的人相比,体内有几种颤螺旋菌属细菌的人胆固醇水平较低。研究人员发现,该属细菌在肠道中的数量惊人,平均每 100 个细菌中就有 1 个。研究人员随后想弄清微生物分解胆固醇的生化途径。为此,他们首先需要在实验室中培养这种生物。幸运的是,实验室多年来一直在收集粪便样本中的细菌,为此他们建立了一个独特的菌种库,其中也包括颤螺旋菌。在成功培育出这种细菌后,研究小组利用质谱法确定了细菌中胆固醇代谢最可能产生的副产品。这使他们能够确定细菌降低胆固醇水平的途径。他们发现,细菌将胆固醇转化为中间产物,然后再由其他细菌分解并排出体外。接下来,研究小组利用机器学习模型确定了负责这种生化转换的候选酶,然后在实验室中的某些颤螺旋菌中检测到了这些酶和胆固醇分解产物。研究小组发现了另一种肠道细菌 - 产粪甾醇真杆菌(Eubacterium coprostanoligenes),它也有助于降低胆固醇水平。这种细菌携带一种基因,科学家们此前已经 先前已经证明参与胆固醇代谢。在新的研究中,研究小组发现,Eubacterium 可能与Oscillibacter对胆固醇水平有协同作用,这表明,研究细菌物种组合的新实验可能有助于揭示不同微生物群落如何相互作用影响人类健康。人类肠道微生物组中的绝大多数基因仍未定性,但研究小组相信,他们在确定胆固醇代谢酶方面取得的成功,为发现受肠道微生物影响的其他类似代谢途径铺平了道路,这些代谢途径可以作为治疗靶点。"有许多临床研究试图进行粪便微生物组转移研究,但对微生物之间以及微生物与肠道之间如何相互作用却不甚了解,"李说。"我们希望先退一步,专注于一种特定的微生物或基因,我们就能系统地了解肠道生态学,并提出更好的治疗策略,比如针对一种或几种微生物进行治疗。""由于肠道微生物组中存在大量功能未知的基因,我们预测代谢功能的能力还存在差距,"他补充说。"我们的工作强调了肠道微生物可能改变其他固醇代谢途径的可能性。我们可能会有很多新发现,这些发现将使我们更接近于从机理上理解微生物是如何与宿主相互作用的。"编译自:ScitechDaily ... PC版: 手机版:

封面图片

由超级蠕虫微生物群制成的"超级肠道"能吞噬问题塑料

由超级蠕虫微生物群制成的"超级肠道"能吞噬问题塑料 在这项新研究中,新加坡南洋理工大学(NTU Singapore)的研究人员在此前对这些耐寒黄粉虫的微生物组进行研究的基础上,构建了一个可扩展的生物体特殊肠道环境副本,他们认为该副本能够可持续地处理大量普通塑料。虽然科学家们早就知道蠕虫对塑料的胃口,但与许多生物技术一样,问题在于如何将其应用于现实世界。这种"超级肠道"背后的团队可能已经破解了这一密码。在这个过程中,很少有蠕虫受到伤害。南洋理工大学副教授曹斌说:"一只蠕虫一生只能够消耗大约几毫克塑料,因此可以想象,如果我们要依靠它们来处理塑料垃圾,需要多少蠕虫。我们的方法将蠕虫从等式中剔除,从而消除了这种需求。我们的重点是增强蠕虫肠道中有用的微生物,并建立一个能有效分解塑料的人工'蠕虫肠道'。"祝您好胃口:菜单上有高密度聚乙烯、聚丙烯和聚苯乙烯 新加坡南洋理工大学研究小组首先给三组蠕虫喂食了三种不同的普通塑料众所周知难以分解的高密度聚乙烯(HDPE)、聚丙烯(PP)和聚苯乙烯(PS),为期 30 天(幸运的对照组则食用燕麦粥)。随后,科学家们从啃食塑料的蠕虫内脏中提取了微生物组,并将其放入装有合成营养物质和三种塑料的烧瓶中培养,让它们在六周内发育成人工肠道。他们发现,与对照组的蠕虫相比,实验室培养的蠕虫肠道中产生了更多的塑料降解细菌,而且每种细菌在处理特定材料时都表现出更高的效率。研究人员(左起)Sakcham Bairoliya、曹斌和刘一楠博士这项研究的第一作者刘一楠博士说:"我们的研究是首次成功尝试从喂食塑料的蠕虫肠道微生物组中培养塑料相关细菌群落。通过将肠道微生物组暴露在特定条件下,我们能够提高人工'蠕虫肠道'中塑料降解细菌的丰度,这表明我们的方法是稳定的,可以大规模复制。"虽然这只是概念验证,但研究人员认为,在更大范围内培育这种人工"超级肠道"并不存在障碍,而且这种人工"超级肠道"还可以专门用于处理特定材料。他们现在正在研究蠕虫坚韧肠道过程背后的分子生物学,希望能更容易地设计出分解塑料的细菌群落,用于商业用途。这项研究发表在《国际环境》杂志上。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人