《.微生物学 》

《.微生物学 》 简介:研究微小生物的学科,涵盖细菌、病毒、真菌等单细胞或多细胞生物的结构、功能及其生态作用。通过揭示微生物的代谢机制与遗传特性,推动医学(如抗生素与疫苗研发)、农业(生物肥料)及工业(发酵技术)等领域的创新应用。 亮点:在公共卫生(如病原体防控)、环境治理(污染物降解)和生物能源开发中发挥关键作用。分子生物学与基因组学技术加速了微生物资源的挖掘,其跨学科特性串联起化学、医学与环境科学的前沿研究。 标签:#微生物研究 #生命科学基础 #抗生素开发 #基因工程 #公共卫生 #环境治理 链接:

相关推荐

封面图片

《.环境工程微生物学 》

《.环境工程微生物学 》 简介:该学科研究微生物在生态保护与污染治理中的应用,利用细菌、真菌等微生物的代谢功能降解污染物,促进碳氮循环。涵盖废水处理、土壤修复、固废资源化等领域,结合分子生物学技术优化生物膜、活性污泥等工艺,推动环境治理向高效、低碳方向转型。 亮点:跨学科融合(环境科学+微生物学)- 技术前沿性(基因编辑、合成生物学)- 应用广泛性(水/气/固全介质治理)- 可持续性(生物能源开发、生态平衡维护) 标签:#环境工程 #微生物学 #生物修复 #合成生物学 #可持续发展 链接:

封面图片

《.环境工程微生物学》 | 简介:.环境工程微生物学这本书带给读者一个新鲜的视角,无论是在探索历史、社会还是文化方面,它都能为你

《.环境工程微生物学》 | 简介:.环境工程微生物学这本书带给读者一个新鲜的视角,无论是在探索历史、社会还是文化方面,它都能为你提供独特的深度和思考。每一页都充满了智慧和启发,是对知识渴望者的不二之选。 | 标签:#书籍 #.环境 #阅读 | 文件大小:NG | 链接:

封面图片

《.微生物学》 | 简介:.微生物学这本书带给读者一个新鲜的视角,无论是在探索历史、社会还是文化方面,它都能为你提供独特的深度和

《.微生物学》 | 简介:.微生物学这本书带给读者一个新鲜的视角,无论是在探索历史、社会还是文化方面,它都能为你提供独特的深度和思考。每一页都充满了智慧和启发,是对知识渴望者的不二之选。 | 标签:#书籍 #.微生 #阅读 | 文件大小:NG | 链接:

封面图片

研究发现受感染的微生物会携带产生甲烷的新基因

研究发现受感染的微生物会携带产生甲烷的新基因 研究发现,微生物一旦受到感染,就会携带产生甲烷的新基因。最近的一项研究揭示,感染微生物的病毒在甲烷(一种强效温室气体)的环境循环中发挥着关键作用,从而加剧了气候变化。通过分析从各种湖泊到牛胃内部等15种不同栖息地采集的近1000组元基因组DNA数据,研究人员发现,微生物病毒携带有控制甲烷过程的特殊遗传元素,即辅助代谢基因(AMGs)。根据生物栖息地的不同,这些基因的数量也会不同,这表明病毒对环境的潜在影响也因其栖息地而异。这项研究的第一作者、俄亥俄州立大学伯德极地与气候研究中心副研究员钟志平说,这一发现为更好地理解甲烷如何在不同生态系统中相互作用和移动提供了重要依据。"了解微生物如何推动甲烷过程非常重要,"钟说,他也是一名微生物学家,研究微生物如何在不同环境中进化。"微生物对甲烷代谢过程的贡献已经研究了几十年,但对病毒领域的研究在很大程度上仍然不足,我们希望了解更多"。这项研究发表在《自然通讯》杂志上。病毒在温室气体排放中的作用病毒帮助促进了地球上所有的生态、生物地球化学和进化过程,但科学家们直到最近才开始探索它们与气候变化的关系。例如,甲烷是仅次于二氧化碳的第二大温室气体排放源,但主要是由被称为古细菌的单细胞生物产生的。这项研究的共同作者、俄亥俄州立大学微生物组科学中心微生物学教授马修-沙利文(Matthew Sullivan)说:"病毒是地球上最丰富的生物实体。在这里,我们在一长串病毒编码的代谢基因中增加了甲烷循环基因,从而扩大了我们对其影响的了解。我们的团队试图回答病毒在感染过程中实际操纵了多少'微生物代谢'"。尽管微生物在加速大气变暖方面发挥的重要作用现已得到广泛认可,但人们对感染这些微生物的病毒所编码的甲烷代谢相关基因如何影响它们的甲烷产生却知之甚少,钟南山说。为了解开这个谜团,钟志平和他的同事们花了近十年的时间从独特的微生物库中收集和分析微生物和病毒 DNA 样本。研究小组选择的最重要的研究地点之一是克罗地亚自然保护区内的弗拉纳湖。在富含甲烷的湖泊沉积物中,研究人员发现了大量影响甲烷产生和氧化的微生物基因。此外,他们还发现了多种病毒群落,并发现了 13 种有助于调节宿主新陈代谢的 AMG。尽管如此,没有任何证据表明这些病毒本身直接编码甲烷代谢基因,这表明病毒对甲烷循环的潜在影响因其栖息地而异,钟说。牲畜和环境影响总之,研究显示,甲烷代谢AMG更有可能在宿主相关环境(如牛胃内部)中发现,而在环境栖息地(如湖泊沉积物)中发现的这些基因则较少。由于奶牛和其他牲畜也造成了全球约 40% 的甲烷排放,他们的研究表明,病毒、生物和整个环境之间的复杂关系可能比科学家们曾经想象的更加错综复杂。钟说:"这些发现表明,病毒对全球的影响被低估了,值得引起更多关注。"虽然目前还不清楚人类活动是否影响了这些病毒的进化,但研究小组希望从这项工作中获得的新见解能让人们进一步认识到传染源对地球上所有生命的影响力。尽管如此,要继续深入了解这些病毒的内在机制,还需要进一步的实验来进一步了解它们对地球甲烷循环的贡献,钟南山说,尤其是当科学家们在研究如何减少微生物驱动的甲烷排放时。他说:"这项工作是掌握气候变化的病毒影响的第一步。我们还有很多东西要学。"编译自:ScitechDaily ... PC版: 手机版:

封面图片

开创性的方法揭示了地球表面深处微生物群落的关键信息

开创性的方法揭示了地球表面深处微生物群落的关键信息 由比奇洛海洋科学实验室研究人员领导的科学家团队开发出一种创新方法,将生活在地球表面深处无氧环境中的单个微生物的遗传学和功能联系起来。测量这两个属性更重要的是将它们联系起来长期以来一直是微生物学的一项挑战,但对于了解微生物群落在碳循环等全球过程中的作用至关重要。比奇洛实验室单细胞基因组学中心开发的新方法使研究人员发现,在死亡谷地下近半英里处的地下含水层中,一种消耗硫酸盐的细菌不仅数量最多,而且是最活跃的生物。研究结果发表在《美国国家科学院院刊》上,表明这种方法可以成为测量不同生物在这些极端环境中活跃程度的有力工具。洞察微生物群落动力学"以前,我们不得不假定所有细胞都以相同的速率运行,但现在我们可以看到,微生物群落个体成员之间的活动水平存在很大差异,"研究科学家兼论文第一作者梅洛迪-林赛说。"这有助于我们了解这些微生物群落的能力,以及它们可能对全球生物地球化学循环产生的影响"。沙漠研究所团队从死亡谷的钻孔中提取样本。图片来源:杜安-莫泽,沙漠研究所最近的研究是一个更大项目的一部分,该项目将微生物的遗传密码它们能做什么的蓝图与它们在任何特定时刻实际在做什么联系起来。方法论方面的进展由美国国家科学基金会 EPSCoR 计划资助的"基因组到表型组"项目是毕格罗实验室、沙漠研究所和新罕布什尔大学之间的一项合作项目。该项目利用单细胞基因测序的最新进展,创造性地采用流式细胞仪估算细胞内呼吸等过程的速率。流式细胞仪是一种分析单个环境微生物的方法,比奇洛实验室将其从生物医学科学中改造出来,使研究人员能够快速分拣出含水层水样中的活微生物。这些微生物被一种特殊设计的化合物染色,当细胞内发生某些化学反应时,这种化合物就会在流式细胞仪的激光下发光。比奇洛实验室的实习学生通过实验得出了细胞在激光下发出荧光的程度与这些反应速度之间的关系,然后将其应用到死亡谷的样本中。测量并分离出活性细胞后,研究小组对它们各自的基因组进行了测序。研究人员还使用了元转录组学(一种确定哪些基因正在活跃表达的方法)和放射性同位素示踪剂(一种测量微生物群落活动的更传统的方法)。这样做既是为了"双重检查"他们的结果,也是为了获得更多关于这些微生物的基因能力与它们实际活动之间联系的信息。单细胞基因组学中心是世界上唯一一家为研究人员提供这种新技术的分析机构。"这项研究对我们的研究团队和南加州地质调查局来说是一个令人兴奋的机会,可以帮助我们更好地了解地下巨大而神秘的微生物生态系统,"比奇洛实验室高级研究科学家、南加州地质调查局局长兼该项目的首席研究员拉穆纳斯-斯泰潘纳斯卡斯(Ramunas Stepanauskas)说。这项新研究首次展示了这种量化单个细胞活性的方法。2022 年底,研究小组发表了关于海水中微生物的研究结果,显示一小部分微生物消耗了海洋中的大部分氧气。在这篇新论文中,研究小组扩展了这一方法,表明它可用于低生物量环境中不依赖氧气的微生物。例如,在从加利福尼亚州地下含水层提取的样本中,科学家们估计每毫升水中有数百个细胞,而一般地表水每毫升中有数百万个细胞。"我们一开始研究海洋中的有氧呼吸生物,因为它们更活跃,更容易分类,也更容易在实验室中生长,"林赛说。"但有氧呼吸只是微生物学中可能存在的一个过程,所以我们想在此基础上进一步拓展"。扩大微生物研究范围研究结果证实,Candidatus Desulforudis audaxviator 细菌(绰号"勇敢的旅行者")不仅是这一环境中数量最多的微生物,也是最活跃的微生物,它能将硫酸盐还原为能量。与之前研究中的海水样本相比,研究小组测得的总体活性率较低,但单个微生物的活性差异很大。研究小组目前正努力将他们的方法应用于测量其他厌氧反应,如硝酸盐还原,并应用于新的环境,包括缅因州沿海的沉积物。由美国国家航空航天局(NASA)资助的一个相关项目也使林赛和她的同事们能够在海洋深处的地下测试这种方法。"现在,我们正在世界各地进行这些点测量,它们确实有助于我们更好地了解微生物的活动情况,但我们需要扩大其规模。因此,我们正在考虑如何将这种方法应用到新的地方,甚至有可能应用到其他星球上,并扩大应用范围。"编译自:ScitechDaily ... PC版: 手机版:

封面图片

《炎症:食物、微生物和疾病的故事》

《炎症:食物、微生物和疾病的故事》 简介:探讨身体防御机制与慢性疾病的复杂关联,揭示饮食选择、肠道菌群对免疫系统的深层影响。通过医学研究及临床数据,解析炎症在糖尿病、心血管病等疾病中的角色,并提供科学视角下的健康干预策略。 亮点: 1. 跨学科视角:整合免疫学、营养学与微生物学最新成果 2. 实用指南:提供抗炎饮食方案与生活方式调整建议 3. 前沿探索:揭示CRISPR技术在炎症相关基因编辑中的潜力 标签:#炎症机制 #微生物生态 #代谢综合征 #饮食干预 #炎症与疾病 #健康管理 #科学实证 更新日期:2025-10-12 14:30:00 链接:/url/

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人