多巴胺是一种神经递质,在我们的大脑中起着重要作用。它是由一种叫做酪氨酸的氨基酸生成的,这种氨基酸必须通过饮食获得。多巴胺在大脑中

多巴胺是一种神经递质,在我们的大脑中起着重要作用。它是由一种叫做酪氨酸的氨基酸生成的,这种氨基酸必须通过饮食获得。多巴胺在大脑中作为一种化学信使,在神经元之间传递信息。它被认为是“奖励中心”的一部分,参与大脑的许多功能,包括记忆、动作、动机、情绪、注意力等。高或低水平的多巴胺与许多健康问题相关,包括帕金森病、抑郁症和注意力缺陷多动症。多巴胺的作用很复杂,不能单独考虑,而是与其他神经递质、激素和大脑中的其他化学物质相互作用。多巴胺的异常水平可能会导致各种疾病,包括精神分裂症、双相情感障碍和强迫症。治疗这些疾病通常涉及调节多巴胺水平或影响多巴胺受体的药物。

相关推荐

封面图片

人类研究首次展示了多巴胺如何教我们的大脑玩新把戏

人类研究首次展示了多巴胺如何教我们的大脑玩新把戏"此前的研究表明,多巴胺在动物如何从'奖励'(也可能是'惩罚')经验中学习方面发挥着重要作用,"WFUSM生理学、药理学和神经外科副教授KennethT.Kishida博士说。"但很少有人直接评估多巴胺在人脑中的快速作用。这是首次在人类中研究多巴胺如何编码奖惩,以及多巴胺是否反映了当今最先进的人工智能研究中所使用的'最佳'教学信号。"在这项研究中,研究人员使用了快速扫描循环伏安法,配以机器学习来实时测量多巴胺水平。由于这只能在侵入性手术中进行,因此三名计划接受这种治疗--脑深部刺激治疗本质性震颤--的患者得以参与研究。研究人员将一根碳纤维微电极插入参与者的大脑深处,以监测纹状体中的多巴胺,纹状体是大脑中参与决策、习惯养成和奖赏的区域。然后让他们玩一个简单的电脑游戏,游戏分为三个阶段,要求参与者通过经验学会做出选择,以获得最大奖励,同时减少惩罚。玩家如果做出正确的决定,就会得到真正的金钱奖励;如果做出错误的决定,就会失去金钱作为惩罚。在游戏的各个阶段,每隔100毫秒对每位参与者的多巴胺进行一次测量。他们的发现出乎意料:多巴胺通路可能比我们想象的要多得多、复杂得多,它在处理输钱和赢钱的过程中发挥着同样重要的作用。而且这些通路在不同的时间尺度上运行。岸田说:"我们发现,多巴胺不仅在大脑中发出积极和消极体验的信号方面发挥作用,而且在试图从这些结果中学习时,它似乎以一种最佳的方式这样做。同样有趣的是,大脑中似乎有一些独立的通路,可以分别让多巴胺系统参与奖励和惩罚体验。我们的研究结果揭示了一个令人惊讶的结果,即这两条通路可能会在时间尺度上稍有变化地编码奖赏和惩罚体验,时间上仅相隔200至400毫秒。"这项研究表明,多巴胺是我们如何从好的和坏的经历中学习的一个关键因素,它帮助我们的大脑调整行为,做出与积极结果相关的选择。"传统上,多巴胺通常被称为'快乐神经递质',"Kishida说。"然而,我们的工作提供的证据表明,多巴胺并非如此。相反,多巴胺是一个复杂系统的重要组成部分,它教导我们的大脑并指导我们的行为。多巴胺还参与教导我们的大脑有关惩罚性的经历,这是一个重要的发现,可能会提供新的研究方向,帮助我们更好地理解抑郁症、成瘾以及相关精神和神经疾病的内在机制。"这项研究发表在《科学进展》(ScienceAdvances)杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1402049.htm手机版:https://m.cnbeta.com.tw/view/1402049.htm

封面图片

对大脑功能的新认识:研究人员发现了一种探寻已久的基因编码蛋白

对大脑功能的新认识:研究人员发现了一种探寻已久的基因编码蛋白高级作者、OHSUVollum研究所的助理科学家SkylerJackman博士说:"当脑细胞活跃时,它们会释放神经递质来与它们的邻居交流。如果一个细胞非常活跃,它可以耗尽它的神经递质供应,这可能导致通信中断和大脑功能紊乱。事实证明,细胞有一个补充其神经递质供应的促进模式,但直到现在,我们还不知道是哪个分子在负责。"他说:"我们发现SYT3直接负责这种神经递质的提升。这让我们对大脑如何分解和无法正常处理信息有了新的认识。"OHSUVollum研究所的助理科学家SkylerJackman博士是发表在《自然》杂志上的一项神经递质发现的高级作者。他正坐在用于观察突触传输范围的设备旁边。资料来源:OHSU/ChristineTorresHicks科学家们创造了缺乏SYT3基因的"基因剔除"小鼠。他们发现,与拥有该基因的对照组小鼠相比,这些小鼠缺乏更强大的突触传输水平。值得注意的是,Syt3基因的突变与人类自闭症谱系障碍和癫痫的情况有关。据杰克曼说,最近的研究提出了开发针对SYT3的基因疗法或药物方法的前景。杰克曼实验室的博士后研究员、主要作者丹尼斯-温加顿博士说:"神经递质释放的失衡是许多神经系统疾病的根本原因。在未来,了解这些分子开关--如SYT3--是我们对抗这些疾病的关键一步"。杰克曼的实验室专门研究突触传输。人类的大脑包含了数以万亿计的突触。发现赋予这些特殊结构以独特属性的分子,对于理解大脑功能和神经系统疾病至关重要。突触传输是感知我们周围环境、做出决定以及我们内心世界几乎所有其他特征的基础。...PC版:https://www.cnbeta.com.tw/articles/soft/1334307.htm手机版:https://m.cnbeta.com.tw/view/1334307.htm

封面图片

研究人员发现"起伏"的大脑机制 挑战了多巴胺在学习中作用的传统观点

研究人员发现"起伏"的大脑机制挑战了多巴胺在学习中作用的传统观点这项研究由纽约大学格罗斯曼医学院的一个小组进行,研究了多巴胺和乙酰胆碱(另一种参与学习和记忆的大脑化学物质)之间的相互作用。以前的研究表明,这两种激素之间存在反比关系;其中一种激素的增加会导致另一种激素的减少。以前的研究认为,奖励通过同时提高多巴胺水平和降低乙酰胆碱水平来促进学习。这种突然出现的激素失衡被认为为脑细胞适应新环境和形成记忆打开了一扇机会之窗。这一过程被称为神经可塑性,是学习和伤后恢复的主要特征。然而,问题仍然在于,食物和其他外部奖励是否是这种记忆系统的唯一驱动力,或者我们的大脑是否能够在没有外界帮助的情况下创造出有利于学习的相同条件。为了澄清这个问题,研究作者重点研究了在乙酰胆碱水平较低的同时多巴胺水平较高的时间和情况。他们发现,即使在没有奖励的情况下,这种情况也会经常出现。事实上,荷尔蒙在大脑中不断起伏,多巴胺水平经常升高,而乙酰胆碱水平却很低,这为持续学习创造了条件。"我们的发现挑战了人们目前对多巴胺和乙酰胆碱何时以及如何在大脑中共同发挥作用的理解,"研究的主要作者安妮-克罗克博士说。"奖励不是为学习创造独特的条件,而是利用了一种已经存在并不断发挥作用的机制。"在最近发表在《自然》杂志上的这项研究中,研究小组让数十只小鼠使用一个轮子,它们可以在上面随意奔跑或休息。有时,研究人员会让动物喝水。然后,他们记录了啮齿动物的大脑活动,并测量了不同时刻多巴胺和乙酰胆碱的释放量。不出所料,喝水会产生典型的多巴胺和乙酰胆碱释放模式,而这正是奖励所引起的。然而,研究小组还观察到,早在接受水食之前,多巴胺和乙酰胆碱就已经遵循"起伏"循环,大约每秒两次,在此期间,一种激素水平下降,另一种激素水平上升。克罗克指出,无论啮齿动物是在奔跑还是静止不动,这种模式都在持续。她补充说,人类在内省和休息时也会出现类似的脑电波。研究的资深作者、神经科学家尼古拉斯-特里奇(NicolasTritsch)博士说:"这些结果可能有助于解释大脑是如何在不需要外部激励的情况下自行学习和演练的,也许这种脉动回路会触发大脑反思过去的事件并从中学习。尽管如此,纽约大学朗贡卫生院神经科学与生理学系助理教授特里奇还是提醒说,他们的研究并不是为了判断小鼠大脑在这种"自我驱动"的学习过程中处理信息的方式是否与人类大脑相同。他说,尽管如此,这项研究的结果也可能为理解与多巴胺水平不正确有关的神经精神疾病(如精神分裂症、注意力缺陷/多动障碍(ADHD)和抑郁症)提供新的思路。例如,精神分裂症患者经常会出现与现实相悖的妄想。特里奇说,如果多巴胺-乙酰胆碱回路不断加强大脑中的连接,那么这一机制的问题可能会导致形成过多和不正确的连接,从而使他们"了解"到并非真实发生的事件。同样,缺乏动力也是抑郁症的常见症状,这使得完成起床、刷牙或上班等基本任务变得困难。作者说,内部驱动系统的紊乱可能是导致这些问题的原因。因此,特里奇说,研究小组下一步计划研究多巴胺-乙酰胆碱循环在此类精神疾病动物模型中的表现,以及在对记忆巩固很重要的睡眠过程中的表现。...PC版:https://www.cnbeta.com.tw/articles/soft/1381973.htm手机版:https://m.cnbeta.com.tw/view/1381973.htm

封面图片

研究发现减少一种氨基酸的摄入量可提高小鼠的寿命和健康水平

研究发现减少一种氨基酸的摄入量可提高小鼠的寿命和健康水平吃什么对健康和长寿有很大影响。然而,坚持限制卡路里的饮食可能很困难,这就引起了人们对在不减少卡路里摄入量的情况下模拟限制卡路里饮食的干预措施的兴趣。对限制蛋白质饮食的益处进行的研究表明,蛋白质摄入量的降低与老年相关疾病和死亡风险的降低以及代谢健康的改善有关。现在,威斯康星大学麦迪逊分校的研究人员在探索限制卡路里饮食的替代方法时发现,减少小鼠体内一种氨基酸的摄入量可以延长它们的寿命,使它们变得更瘦,更不虚弱,也更不易患癌症。该研究的通讯作者达德利-拉明(DudleyLamming)说:"我们喜欢说卡路里不仅仅是卡路里。饮食中的不同成分除了作为卡路里的功能外,还有其他价值和影响,我们一直在研究一种成分,很多人可能吃得太多了。"这种成分就是异亮氨酸,它是九种必需氨基酸之一。早些时候对威斯康星人健康状况的一项研究数据发现,体重指数(BMI)较高的人往往摄入更多的异亮氨酸,而异亮氨酸在鸡蛋、奶制品、大豆蛋白和许多肉类等食物中含量丰富。为了进一步研究异亮氨酸对健康的影响,研究人员让雄性和雌性不同基因的小鼠食用三种氨基酸定义的饮食中的一种。对照组饮食包含所有20种常见氨基酸,反映了21%的热量来自蛋白质的天然饲料。其他饮食要么减少了所有氨基酸,要么只减少了67%的异亮氨酸。这三种食物的脂肪含量相同,即等热量。研究开始时,小鼠大约六个月大,大致相当于30多岁的人类,它们想吃多少就吃多少。拉明说:"很快,我们就看到食用低异亮氨酸饮食的小鼠脂肪减少了--它们的身体变得更健壮,脂肪减少了。相比之下,食用低氨基酸饮食的小鼠最初变得更瘦,但体重和脂肪又重新增加了。"研究人员发现,与对照组相比,食用低异亮氨酸饮食的小鼠寿命更长;雄性小鼠平均寿命长33%,雌性小鼠平均寿命长7%。除了寿命延长外,"健康寿命"也有所改善。在低异亮氨酸喂养的雄性小鼠中,寿命与与身体状况相关的虚弱指标(包括尾巴僵硬度、皮毛颜色和震颤发生率)之间存在很强的负相关。在对照组喂养的雌性动物中,寿命与胡须脱落、毛发脱落和脊柱弯曲(后凸)呈强烈的正相关,而在异亮氨酸摄入量减少的雌性动物中,这些缺陷与寿命呈负相关。将小鼠的异亮氨酸摄入量限制在67%会对小鼠的寿命和健康产生一系列益处。值得注意的是,在减少所有氨基酸(包括异亮氨酸)摄入量的饮食中,发现雌雄小鼠的健康寿命都得到了改善,体弱的程度与低异亮氨酸饮食相同,但并没有延长雌雄小鼠的寿命。"以前的研究表明,从非常年幼的小鼠开始,低热量、低蛋白或低氨基酸饮食可以延长寿命,"拉明说。"我们从已经开始变老的小鼠开始研究。即使在接近中年的时候开始改变饮食习惯,仍能对寿命和我们所说的'健康寿命'产生如此大的影响,这很有趣,也很令人鼓舞。"研究人员说,异亮氨酸摄入量减少的小鼠摄入的热量明显高于同类小鼠,这可能是因为它们试图增加异亮氨酸的摄入量。但它们也消耗了更多的卡路里,仅仅通过调整新陈代谢就减掉并保持了更瘦的体重,而不是通过更多的运动。小鼠还能更好地控制血糖,雄性小鼠较少出现与年龄有关的前列腺增生。虽然癌症是研究中使用的不同基因小鼠的主要死因,但低异亮氨酸喂养的雄性小鼠患肿瘤的几率较低。人们对减少异亮氨酸摄入有益健康的机制还不甚了解,需要进一步研究。此外,还需要进行更多的研究,以确定限制异亮氨酸摄入是否会产生负面影响,并研究氨基酸的最佳水平如何随年龄和性别而变化。"拉明说:"我们发现雌性小鼠比雄性小鼠获益更少,我们或许可以利用这一点来找到机制。"研究人员指出了这项研究的一些局限性。他们只研究了单一的限制水平,而对卡路里和蛋白质限制饮食的其他研究表明,不同品系和性别的小鼠可能对不同的限制水平做出最佳反应。此外,为了保持饮食等热量,低氨基酸饮食中氨基酸的减少量由额外的碳水化合物来平衡,异亮氨酸的减少量由非必需氨基酸来平衡。更复杂的是,人类需要异亮氨酸来维持生命。它是红细胞内的携氧色素,有助于制造血红蛋白,也是肌肉蛋白质合成、能量生产和免疫系统支持等重要功能所必需的。"我们不能让每个人都改吃低异亮氨酸饮食,"拉明说。"但将这些益处缩小到单一氨基酸,能让我们更接近于了解生物过程,或许还能为人类提供潜在的干预措施,比如异亮氨酸阻断药物。"这项研究发表在《细胞代谢》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1399301.htm手机版:https://m.cnbeta.com.tw/view/1399301.htm

封面图片

研究人员靶向超声波实现改变大脑功能 可用于治疗精神疾病

研究人员靶向超声波实现改变大脑功能可用于治疗精神疾病通常,超声波是通过发出弥散声波并记录反射声或回声来生成图像,从而检查身体内部结构的。然而,低强度经颅超声波刺激(TUS)可以同时针对大脑表层和深层区域,并具有极高的特异性,它将超声波压力置于大脑区域,从而改变神经元相互作用的方式。英国普利茅斯大学的研究人员领导了一项研究,以测试TUS对大脑功能的影响,结果发现它能产生显著的变化。他们招募了24名健康成年人,研究TUS如何影响γ-氨基丁酸(GABA)的水平和大脑区域之间的连接。GABA是大脑中主要的抑制性神经递质,它能降低神经元发送和接收化学信息的能力。具体来说,GABA会影响人体对焦虑、恐惧和压力感的反应。所有参与者都完成了三次Theta-burstTUS治疗,每次治疗后都要进行核磁共振成像,以评估大脑功能的变化。Theta-burstTUS是一种高频率短脉冲脑刺激,它密切模仿神经元活动的自然节奏。它被认为能促进可塑性,即大脑根据学习或经验形成和重组神经连接的能力。研究人员发现,TUS作用于大脑后扣带回皮层(PCC)--一个与情绪和记忆相关的大脑深层区域--会在治疗后一小时内降低该区域的GABA水平。他们还发现,PCC与大脑其他部分的交流方式(功能连通性)在这段时间内有所改善。在一系列精神疾病中,PCC都被发现存在异常。当将TUS应用于背侧前扣带回皮层(dACC)时--该区域与情感、移情、冲动控制和决策有关,与PCC一样,也与精神病理学有关--研究人员没有发现GABA水平出现同样的下降,但他们确实看到了功能连通性的提高。研究人员说,他们的研究结果表明,TUS对人类有效,能在大脑中产生可逆的变化。虽然还需要进一步研究,但他们表示,这是开发治疗精神健康状况的非侵入性手段的第一步。该研究的通讯作者艾尔莎-福拉格南(ElsaFouragnan)说:"例如,如果服用治疗抑郁症的药物,药物将影响整个大脑,而临床医生对药物去向和作用的控制非常有限。我们已经知道,在某些情况下,大脑的特定区域(及其某些连接)会出现功能障碍,但其他区域却能很好地工作。这项研究为我们提供了真正的潜力,让我们可以考虑利用超声波对一系列心理健康问题患者进行更有针对性的干预。"研究人员已经在探索是否可以使用TUS来改变大脑的多巴胺能系统,多巴胺能系统是检测和解读食物、性和滥用药物等奖赏刺激的主要奖赏通路。该研究发表在《自然通讯》(NatureCommunications)杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1383331.htm手机版:https://m.cnbeta.com.tw/view/1383331.htm

封面图片

研究发现大脑中过度活跃的炎症与自杀风险增加有关

研究发现大脑中过度活跃的炎症与自杀风险增加有关全球自杀率仍然令人担忧。尽管美国的自杀率在2019年至2021年期间总体有所下降,但根据美国疾病控制和预防中心(CDC)的数据,这一数字又有所上升。英国也出现了类似的情况,而在澳大利亚,自杀死亡人数自2013年以来一直呈上升趋势。自杀行为是由心理、社会和生物因素共同驱动的。先前的研究表明,炎症可能会导致大脑化学变化,并提高自杀风险。美国范安德研究所的研究人员在一项同类研究中首次研究了自杀死亡时大脑中发生的生物机制,以了解它们是如何导致自杀行为的。"我们的目标是通过更好地了解与自杀相关的大脑功能来预防自杀。我们把重点放在大脑上,因为大脑是影响情绪、自杀意念和意图以及决策的生物过程所在。这项研究使我们能够在风险最大的时刻看到大脑,并精确定位这种风险的生物标志物"。研究人员将29名自杀死亡者的死后脑组织样本与32名因意外、他杀或心脏病发作等其他原因猝死者(对照组)的样本进行了比较。这些样本取自年龄在17至77岁之间的人群。毒理学筛查结果表明,自杀身亡者基本上没有服用抗抑郁和抗精神病药物,这使研究人员能够更清楚地看到与自杀有关的分子变化,否则这些变化可能会被掩盖。LenaBrundin博士,范-安德尔研究所在对样本进行RNA测序和差异基因表达分析后,研究人员发现,在自杀死亡者中,NPAS4基因(一种炎症和脑细胞健康的关键调节因子)的表达明显下调。基因甲基化是基因"开启"或"关闭"的过程,研究人员在研究基因甲基化时发现,在自杀身亡者中,有40个不同的甲基化区域映射到7个与炎症和免疫反应有关的基因上。在对照组中,NPAS4甲基化与NPAS4表达之间有明显的关联,而在自杀死亡者组中却没有这种关联,这证实了NPAS4的失调。总体而言,自杀者组显示出与炎症和兴奋毒性机制相关的基因组被激活。在兴奋性中毒中,当原本安全和必要的神经递质水平过高时,神经细胞就会受到损害或死亡。抑制性和兴奋性神经递质水平的平衡在包括重度抑郁症在内的多种精神疾病中起着重要作用。除了过度活跃的炎症机制外,与少突胶质细胞成熟有关的基因组也受到抑制,而少突胶质细胞是用髓鞘包裹轴突并保护神经元免受氧化损伤的特化细胞。观察到的少突胶质细胞数量也减少了。研究人员说,他们的研究为进一步探索抗炎药物降低自杀行为风险提供了支持,尤其是在已确定有自杀意念的情况下。该研究的通讯作者莉娜-布伦丁(LenaBrundin)说:"随着自杀率的持续上升,我们必须制定更多循证策略,以应对导致自杀风险的所有因素。我们的研究指出了大脑中的几个关键变化,有朝一日,这些变化可能会成为治疗的目标,从而达到降低风险和挽救生命的目的。"目前的研究结果对于正在寻找与自杀风险相对应的血液生物标志物的研究人员来说也很有用。未来的研究将侧重于进一步了解炎症在自杀风险中的作用、确定生物标志物以及制定评估潜在治疗方案的策略。该研究发表在《分子精神病学》(MolecularPsychiatry)杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1397123.htm手机版:https://m.cnbeta.com.tw/view/1397123.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人