科学家创造出一种可以拯救生命的粘液

科学家创造出一种可以拯救生命的粘液磁性粘液机器人听起来不像是有实际医疗用途的东西,而更像是电影中的生物,但这样的发明有可能被用来帮助病人。它是由一群来自中国香港的科学家创造,目的是在整个身体内进行操纵并能捡起要取出的物体。粘液机器人的特质是使其完美的原因。据悉,它是由一种非牛顿流体制成的,为聚乙烯醇和硼砂的组合。这意味着,当受到高速力的冲击时它就像一个固体物体。在较慢的力作用下,它作为一种液体。这使它成为在身体无数细小的角落和缝隙中航行的理想选择。用一个完全固体的工具把物体从身体里取出来要困难得多。不过有了可塑性强的东西如磁性粘液机器人,它可以更容易地完成任务。它被称为“磁性”,因为它可以由磁铁控制,从而使医生能让粘液直接去它需要的地方。然后粘液可以到达并包裹住物体并将它们移出身体。粘液机器人如何在医学上使用创造粘液机器人的研究人员建议,这项技术的主要用途是在消化系统内。这样,它可以被用来捡起被吞下并需要从体内取出的异物。这方面的一个例子是防止诸如电池等物体的伤害。电池的泄漏是有毒的,但如果粘液能够捕获并包裹它,这将防止任何化学物质在体内造成破坏。然而磁性粘液机器人仍存在一些问题。而且这个概念还没有经过测试。一个问题是,粘液上的涂层是由二氧化硅制成的,这跟物品上那些旨在保持新鲜的小包装中的材料相同,上面总是写着“请勿食用”。这是因为它们对人体有毒。假设让二氧化硅包裹的粘液在体内停留很短的时间会更安全,如果有一个更有可能造成伤害的异物这可能是值得的。磁性粘液机器人需要在医疗环境中进行测试以便在未来使用,但目前还没有计划这样做。不过在未来,这种粘液可以拯救一些人的生命也不是完全不可能。PC版:https://www.cnbeta.com/articles/soft/1301767.htm手机版:https://m.cnbeta.com/view/1301767.htm

相关推荐

封面图片

经常忘了东西放哪里?科学家们创造了一种机器人来帮忙

经常忘了东西放哪里?科学家们创造了一种机器人来帮忙电子和计算机工程的博士后阿里-阿尤布博士说:"这种产品的长期影响真的很令人激动。用户可以接触的不仅仅是一个伴侣机器人,而是一个个性化的伴侣机器人,甚至可以让他们自身变得更加独立。"Fetch,研究中使用的机器人。图像/滑铁卢大学阿尤布和三位同事对应对痴呆症的人数迅速上升感到震惊,痴呆症是一种限制大脑功能的疾病,导致混乱、记忆丧失和残疾。这些人中的许多人反复忘记日常物品的位置,这降低了他们的生活质量,给护理人员带来了额外的负担。工程师们相信,在这种情况下,一个拥有自己的偶发记忆的伴侣机器人可能会改变游戏规则。他们成功地利用人工智能创造了一种新的人工记忆。研究小组从Fetch移动操纵机器人开始,它有一个摄像头来感知它周围的世界。接下来,他们使用一种物体探测算法,对机器人进行编程,以探测、跟踪并通过存储的视频保持其摄像头视野中的特定物体的记忆记录。由于机器人能够区分一个物体和另一个物体,它可以记录物体进入或离开其视野的时间和日期。研究人员随后开发了一个图形界面,使用户能够选择他们想要追踪的物体,并在输入物体的名称后,在智能手机应用程序或电脑上搜索它们。一旦这样做了,机器人就能指出它最后一次观察特定物体的时间和地点。测试表明,该系统是高度准确的。虽然一些患有痴呆症的人可能会觉得这项技术对于帮助他们而言还是太困难了,但阿尤布说,护理人员可以随时使用它。展望未来,研究人员将对无残疾人士进行用户研究,然后再是痴呆症患者。...PC版:https://www.cnbeta.com.tw/articles/soft/1361681.htm手机版:https://m.cnbeta.com.tw/view/1361681.htm

封面图片

科学家创造出世界上最小、最轻、最快的全功能微型水黾机器人

科学家创造出世界上最小、最轻、最快的全功能微型水黾机器人华盛顿州立大学的研究人员开发出了体积最小、速度最快的微型机器人,有望改变从人工授粉到外科手术的各个领域。这些机器人利用形状记忆合金进行运动,比以前的型号明显更轻、更快,通过模仿自然界昆虫的行为,有望实现更高的自主性和效率。图片来源:西悉尼大学图片社速度和微型化方面的突破机械与材料工程学院的博士生、这项研究的第一作者康纳-特里格斯塔德(ConorTrygstad)说:"与这种规模的其他微型机器人相比,这是非常快的速度,尽管它仍然落后于它们的生物亲戚。一只蚂蚁通常重达五毫克,移动速度可达每秒近一米。"微型机器人的关键在于使机器人移动的微型致动器。特里格斯塔德利用一种新的制造技术,将致动器微型化到不足一毫克,这是目前已知最小的致动器。一个西悉尼大学创造的机器人被放在一个25美分硬币旁边,以显示其大小。资料来源:西悉尼大学领导该项目的西悉尼大学机械与材料工程学院工程学副教授NéstorO.Pérez-Arancibia说:"这些致动器是迄今为止为微型机器人开发的最小、最快的致动器。"先进的致动器技术致动器使用一种称为形状记忆合金的材料,这种材料在加热时能够改变形状。之所以称之为"形状记忆",是因为它能记住并恢复到原来的形状。与移动机器人的典型电机不同,这些合金没有任何活动部件或旋转组件。Trygstad说:"它们的机械性能非常好,轻型致动器的开发开辟了微型机器人技术的新领域。"形状记忆合金一般不用于大规模机器人运动,因为它们的速度太慢。但在西悉尼大学的机器人中,执行器是由两根直径为1/1000英寸的微小形状记忆合金线制成的。只需少量电流,这些金属丝就能轻松加热和冷却,使机器人能够以每秒40次的速度扇动鳍或移动脚。在初步测试中,致动器还能举起超过自身重量150倍的物体。与其他用于使机器人移动的技术相比,SMA技术也只需要极少量的电力或热量就能使机器人移动。未来方向与改进Trygstad说:"SMA系统对供电系统的要求要低得多。"他是一名狂热的钓鱼爱好者,长期以来一直在观察水黾,并希望进一步研究它们的动作。虽然西悉尼大学的水黾机器人是用扁平的拍打动作来移动自己,但自然界的昆虫会用腿做更有效率的划船动作,这也是真正的昆虫能移动得更快的原因之一。研究人员希望模仿另一种昆虫,开发出一种既能在水面上也能在水面下移动的水黾型机器人。他们还在努力利用微型电池或催化燃烧技术,使机器人完全自主,不受电源束缚。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1419851.htm手机版:https://m.cnbeta.com.tw/view/1419851.htm

封面图片

量子转折:科学家加热液体创造出超固体结构

量子转折:科学家加热液体创造出超固体结构当量子液体被加热时,可以出现结晶结构。研究人员发现,加热量子液体可以形成超固态结构,它同时表现出固体和超流体的特性。这个国际合作团队创建了第一个相图,揭示了超固态的形成与温度的关系。资料来源:奥胡斯大学超固体是一个相对较新和令人兴奋的研究领域。它们同时表现出固体和超流体的特性。2019年,三个研究小组首次在超冷量子气体中毫无疑问地证明了这种状态,其中包括来自因斯布鲁克大学实验物理系和因斯布鲁克奥地利科学院量子光学和量子信息研究所的弗朗西斯卡-费拉诺领导的研究小组。2021年,弗兰西斯卡-费拉诺的团队详细研究了镝原子双极气体中超固体状态的生命周期。他们观察到了一些意想不到的东西。FrancescaFerlaino团队的ClaudiaPoliti回忆说:"我们的研究数据表明,温度的增加促进了超固态结构的形成。这种令人惊讶的行为是对理论的一个重要推动,因为之前的理论很少关注这种情况下的热波动。"因斯布鲁克的科学家们与托马斯-波尔领导的丹麦理论小组联合起来,探索热波动的影响。他们开发并在《自然通讯》上发表了一个理论模型,可以解释实验结果,并强调了加热量子液体可以导致量子晶体的形成这一论点。理论模型显示,随着温度的升高,这些结构可以更容易形成。FrancescaFerlaino高兴地说:"有了新的模型,我们现在第一次有了一个相图,显示了超固态的形成与温度的关系。这种令人惊讶的行为与我们的日常观察相矛盾,它是由镝的强磁性原子的偶极-偶极相互作用的各向异性引起的。"这项研究是朝着更好地理解物质的超固态迈出的重要一步,由奥地利科学基金FWF、欧洲研究理事会ERC和欧盟等机构资助。...PC版:https://www.cnbeta.com.tw/articles/soft/1356843.htm手机版:https://m.cnbeta.com.tw/view/1356843.htm

封面图片

科学家创造出带有人类肌肉基因的酵母

科学家创造出带有人类肌肉基因的酵母生物技术专家PascaleDaran-Lapujade及其代尔夫特理工大学的团队成功地将人类肌肉基因插入到面包酵母的DNA中。这是科学家们首次有效地将人类的一个关键特征插入到酵母细胞中。他们的研究已于最近发表在《CellReports》上。Daran-Lapujade的实验室向酵母细胞引入了一种特性,这种特性由人类无法离开的10个基因集合所调控;它们携带着一种被称为代谢途径的过程的蓝图,这种代谢途径分解糖来收集能量并在肌肉细胞内产生细胞构建块。由于这一机制涉及许多疾病--包括癌症,所以修改后的酵母可以用于医学研究。Daran-Lapujade说道:“现在我们了解了整个过程,医学家们可以将这种人性化的酵母模型作为药物筛选和癌症研究的工具。”人类和酵母是相似的根据Daran-Lapujade的说法,酵母和人类之间有很多相似之处。“这似乎很奇怪,因为酵母是以单细胞形式生存的,而人类由一个复杂得多的系统组成,但细胞的运作方式非常相似。”因此,科学家们经常将人类基因转移到酵母中。因为酵母除去了人体中可能存在的所有其他相互作用,它创造了一个干净的环境,研究人员可以在其中分析一个单一的过程。Daran-Lapujade指出:“跟人体细胞或组织相比,酵母是一种神奇的生物体,因为它的生长简单且它的遗传易得性:它的DNA可以很容易地被修改以解决基本问题。许多关键性的发现如细胞分裂周期都是由于酵母而被阐明的。”人性化的酵母Daran-groupLapujade's之前成功地设计了人工染色体,其被作为一个DNA平台运作以在酵母中构建新功能。他们想测试一下,加入几个人类基因和完整的代谢途径,他们能走多远,细胞是否还能作为一个整体运作。“如果我们把控制人类肌肉的糖分消耗和能量生产的同一组基因加入到酵母中会怎么样?”Daran-Lapujade提问道,“我们能在酵母中把这样一个重要而复杂的功能人性化吗?”对于博士生和共同第一作者FrancineBoonekamp和EwoutKnibbe来说,工程化的酵母出奇地简单。“我们不只是将人类基因移植到酵母中,我们还删除了相应的酵母基因并用人类肌肉基因完全取代它们。你可能认为你不可能将酵母的版本跟人类的版本进行交换,因为在人类和酵母细胞中,这是一个如此特殊和严格调节的过程。但它像一个魅力一样发挥作用!”Daran-Lapujade解说道。进一步的人性化通过跟BarbaraBakker教授的实验室(格罗宁根大学医学中心)的合作,研究人员利用了实验室培养的人类组织细胞以比较了人类基因在酵母中的表达和在原生人类肌肉环境中的表达。在酵母中产生的人类酶和在其原生人类细胞中产生的人类酶的特性非常相似,这支持了新的人源化酵母作为人类细胞模型的价值。这一个过程只是人类新陈代谢的一小部分。酵母和人类细胞之间还有许多类似的过程,可以在人源化酵母中进行研究。虽然Daran-Lapujade专注于工程酵母的基础和技术方面,因此不打算自己研究人源化酵母的应用,但她希望跟其他有兴趣使用该工具的科学家进行合作。“这只是一个起点,我们可以...PC版:https://www.cnbeta.com/articles/soft/1301605.htm手机版:https://m.cnbeta.com/view/1301605.htm

封面图片

日本科学家创造出遥控半机械蟑螂

日本科学家创造出遥控半机械蟑螂日本研究人员近日设计了一个用于制造遥控半机械蟑螂的系统,该系统配备了一个微型无线控制模块,该模块由连接到太阳能电池的可充电电池供电。尽管有机械装置,但超薄的电子器件和柔性材料使昆虫能够自由移动。这些成就将有助于使半机械昆虫的使用成为实际的现实。由日本理化学研究所(RIKEN)先锋研究集群(CPR)的研究人员领导的一个国际团队9月5日在科学杂志《npj-柔性电子》上报告了这项成果。科学家们一直在尝试设计半机械昆虫来帮助检查危险区域和监测环境。然而,为了使半机械昆虫的使用具有实用性,处理者必须能够长时间远程控制它们。这就需要对它们的腿部部分进行无线控制,由一个微小的可充电电池供电。保持电池充足的电量是至关重要的--没有人希望有一群突然失去控制的半机械蟑螂在周围游荡。虽然可以建造为电池充电的对接站,但返回和充电的需要会扰乱时间敏感的任务。因此,一个最佳的方法是包括一个机载太阳能电池,可以持续确保电池保持充电状态。当然,所有这些都是说起来容易做起来难。为了成功地将这些设备集成到表面积有限的蟑螂身上,工程团队需要开发一个特殊的背包和超薄的有机太阳能电池模块。他们还需要一个粘附系统,以保持机械长时间的附着,同时还允许自然运动。在RIKENCPR的KenjiroFukuda领导下,研究小组用马达加斯加蟑螂进行了实验,这些蟑螂大约有6厘米(2.4英寸)长。他们使用一个特别设计的背包将无线腿部控制模块和锂聚合物电池安装在昆虫胸部的顶部。这是以一只模型蟑螂的身体为模型,用弹性聚合物进行3D打印。结果是一个与蟑螂的弯曲表面完全吻合的背包,使坚硬的电子设备能够稳定地安装在蟑螂胸部超过一个月。超薄的0.004毫米厚的有机太阳能电池模块被安装在腹部的背面。据Fukuda称:“安装在身体上的超薄有机太阳能电池模块实现了17.2mW的功率输出,这比目前活体昆虫上最先进的能量采集装置的功率输出大50多倍。”事实证明,超薄和灵活的有机太阳能电池,以及它与昆虫的连接方式,对于确保运动自由是必要的。在仔细研究了蟑螂的自然运动后,科学家们意识到腹部会改变形状,外骨骼的部分会重叠。为了适应这种情况,他们在薄膜上交织了粘性和非粘性部分,这使它们能够弯曲,但也能保持连接。当测试较厚的太阳能电池薄膜时,或者当薄膜被均匀地附着时,蟑螂跑相同的距离需要两倍的时间。它们在仰卧时也很难摆正自己的位置。一旦这些组件被整合到蟑螂体内,再加上刺激腿部节段的电线,新的机械人被测试。用假太阳光给电池充电30分钟,用无线遥控器让动物左右转动。“考虑到基本运动过程中胸部和腹部的变形,胸部的刚性和柔性元件以及腹部的超软装置组成的混合电子系统似乎是机械蟑螂的有效设计,”Fukuda说。“此外,由于腹部变形不是蟑螂所独有的,我们的策略可以适用于其他昆虫,如甲虫,甚至将来可能适用于像蝉这样的飞行昆虫。”...PC版:https://www.cnbeta.com/articles/soft/1312593.htm手机版:https://m.cnbeta.com/view/1312593.htm

封面图片

寻找“超级马铃薯” - 科学家创造出超级马铃薯庞基因组

寻找“超级马铃薯”-科学家创造出超级马铃薯庞基因组科学家们创建了一个马铃薯超级基因组,以确定抗逆性更强、营养更丰富的马铃薯的性状。这个庞大的基因数据库有助于开发抗病和适应气候的马铃薯,从而有利于全球粮食安全。在玛蒂娜-斯特罗姆维克(MartinaStrömvik)教授的领导下,该研究小组开发了马铃薯超级基因组,以确定可为下一代超级马铃薯铺平道路的遗传特征。Strömvik教授说:"我们的超级庞基因组揭示了马铃薯的遗传多样性,以及有可能在我们现代作物中培育出哪些类型的遗传特征以使其变得更好,它代表了60个物种,是迄今为止马铃薯及其近缘种基因组序列数据的最广泛收集。"基因组是生物体的一套完整的遗传指令,称为DNA序列,而庞基因组旨在捕捉一个物种内完整的遗传多样性,超级庞基因组还包括多个物种。马铃薯是世界上许多人的主食来源--就人类消费而言,它是仅次于水稻和小麦的全球最重要的粮食作物之一。Strömvik教授说:"野生马铃薯物种可以教给我们很多关于哪些遗传性状对适应气候变化和极端天气、提高营养质量和改善粮食安全至关重要的知识。"为了建立马铃薯庞基因组,研究人员使用超级计算机对来自公共数据库(包括加拿大、美国和秘鲁的基因库)的数据进行了压缩。据研究人员称,马铃薯基因组可用于回答有关这种重要作物进化的许多问题,这种作物是近1万年前秘鲁南部山区的土著居民驯化的。它还可以用来帮助识别特定基因,利用传统育种或基因编辑技术创造出超级土豆。科学家们希望开发出一种能够抵御各种形式疾病的作物,并能更好地抵御极端天气,如大量降雨、霜冻或干旱。...PC版:https://www.cnbeta.com.tw/articles/soft/1381289.htm手机版:https://m.cnbeta.com.tw/view/1381289.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人