大脑如何在混乱中作出决定?原理类似于数据压缩技术

大脑如何在混乱中作出决定?原理类似于数据压缩技术如果你在20世纪80年代长大,或者喜欢玩老式视频游戏,你可能对《青蛙过河》很熟悉。这个游戏可能相当困难。要想成功,你必须首先穿过繁忙的交通流,然后在移动的木板上走"之"字形,以避免摔进充满危险的河里。大脑是如何决定在这种混乱中注意什么的呢?发表在科学杂志《自然-神经科学》上的一项研究提供了一个可能的解决方案:数据压缩。该研究的资深作者之一、葡萄牙Champalimaud基金会理论神经科学实验室负责人克里斯蒂安-马肯斯说:"压缩外部世界的表征类似于消除所有不相关的信息并对情况采取临时的'隧道视野'。""大脑通过使用数据压缩使性能最大化,同时使成本最小化,这种想法在感官处理的研究中普遍存在。然而,它还没有真正在认知功能中得到研究,"资深作者、Champalimaud神经科学研究项目主任JoePaton说。"使用实验和计算技术的组合,我们证明了这个相同的原则延伸到了比以前更广泛的功能领域。研究人员在他们的试验中采用了一个计时范式。小鼠必须在每次试验中决定两个音调的间隔时间是大于还是小于1.5秒。当动物完成挑战时,研究人员同时捕捉到其大脑中多巴胺神经元的活动。"众所周知,多巴胺神经元在学习行动的价值方面起着关键作用,"Machens解释说。"因此,如果动物在某次试验中错误地估计了间隔时间,那么这些神经元的活动将产生一个'预测错误',有助于提高未来试验中的表现。"为了确定哪种计算强化学习模型最能体现神经元的活动和动物的行为,该研究的第一作者AsmaMotiwala构建了一些模型。这些模型在如何表示可能与执行任务有关的数据方面各不相同,但它们有某些共同的原则。该小组发现,数据只能由具有压缩任务表征的模型来解释。"大脑似乎会消除所有不相关的信息。奇怪的是,它显然也摆脱了一些相关的信息,但还不足以对动物收集的总体奖励的多少产生真正的打击。小鼠显然知道如何在这个游戏中取得成功,"Machens说。有趣的是,所代表的信息类型不仅是关于任务本身的变量。相反,它还捕捉到了动物自身的行动。"以前的研究侧重于独立于个体行为的环境特征。但我们发现,只有依赖于动物行为的压缩表征才能完全解释数据。事实上,我们的研究首次表明,学习外部世界表征的方式,可能以不寻常的方式与动物选择如何行动相互作用,"Motiwala解释说。据作者称,这一发现对神经科学和人工智能有广泛的影响。"虽然大脑显然已经进化到可以有效地处理信息,但人工智能算法往往通过蛮力解决问题:使用大量数据和大量参数。我们的工作提供了一套原则来指导未来的研究,即在生物学和人工智能的背景下,世界的内部表征如何能够支持智能行为,"Paton总结道。PC版:https://www.cnbeta.com/articles/soft/1304151.htm手机版:https://m.cnbeta.com/view/1304151.htm

相关推荐

封面图片

科学家从章鱼视觉系统的地图中发现大脑进化的新线索

科学家从章鱼视觉系统的地图中发现大脑进化的新线索章鱼大脑的荧光图像显示不同的不同类型的神经元的位置信用:Niell实验室他们在一篇新的科学论文中列出了章鱼视觉系统的详细地图。在该地图中,他们对大脑中专门用于视觉的部分的不同类型的神经元进行了分类。这一结果对其他神经科学家来说是一个宝贵的资源,提供了可以指导未来实验的细节。此外,它还可以让我们更广泛地了解大脑和视觉系统的进化情况。该团队今天(10月31日)在《当代生物学》杂志上报告了他们的发现。CrisNiell在俄亥俄大学的实验室研究视觉,主要是在小鼠身上。但是几年前,博士后JuditPungor给实验室带来了一个新物种--加州双点章鱼。尽管传统上它并不被用作实验室的研究对象,但这种头足类动物很快就引起了俄亥俄大学神经科学家的兴趣。与小鼠不同,小鼠并不以拥有良好的视觉而闻名,"章鱼有一个惊人的视觉系统,它们的大脑中有很大一部分专门用于视觉处理,"Niell说。"它们的眼睛与人类的眼睛非常相似,但在那之后,大脑就完全不同了。"章鱼和人类的最后一个共同祖先是在5亿年前,此后,这些物种在非常不同的环境中进化。因此,科学家们不知道视觉系统的相似之处是否超出了眼睛的范围,或者章鱼是否反而使用了完全不同种类的神经元和大脑回路来实现类似的结果。"看到章鱼的眼睛如何与我们的眼睛相似地进化,思考章鱼的视觉系统如何能够成为更普遍地理解大脑复杂性的模型是一件很酷的事情,"Niell实验室的研究生和该论文的第一作者MeaSongco-Casey说。"例如,是否有基本的细胞类型是这种非常聪明、复杂的大脑所需要的?"在这里,研究小组使用遗传技术来确定章鱼视叶中不同类型的神经元,这是大脑中专门用于视觉的部分。他们挑选出六大类神经元,根据它们发出的化学信号进行区分。观察这些神经元中某些基因的活动,然后发现更多的亚型,为更具体的作用提供了线索。在某些情况下,科学家们精确地指出了特定的神经元群在独特的空间排列中--例如,在视叶周围的一圈神经元都使用一种叫做辛胺的分子发出信号。果蝇在活动时使用这种类似于肾上腺素的分子来增加视觉处理。因此,它也许在章鱼中也有类似的作用。"现在我们知道有这种非常特殊的细胞类型,我们可以开始进入并弄清楚它的作用,数据中大约有三分之一的神经元看起来还没有完全发育。章鱼的大脑在动物的生命周期中不断成长并增加新的神经元。这些不成熟的神经元,尚未整合到大脑电路中,是大脑处于扩张过程中的一个标志!"。然而,该地图并没有像研究人员所想的那样,显示出明显从人类或其他哺乳动物大脑转移过来的神经元组。这些神经元并没有相互映射--它们使用不同的神经递质。但是,也许它们正在进行相同种类的计算,只是方式不同。深入挖掘还需要更好地掌握头足类动物的遗传学。参与这项研究的安德鲁-克恩实验室的研究生加比-科芬(GabbyCoffing)说,由于章鱼在传统上没有被用作实验动物,许多用于果蝇或小鼠的精确遗传操作的工具还不存在于章鱼。有很多基因我们不知道它们的功能是什么,因为我们还没有对很多头足类动物的基因组进行排序。如果没有相关物种的基因数据作为比较点,就很难推断出特定神经元的功能。研究团队正在迎接这一挑战。他们现在正在努力绘制章鱼大脑视叶以外的地图,看看他们在这项研究中关注的一些基因如何在大脑的其他地方出现。他们还在记录视叶中的神经元,以确定它们如何处理视觉场景。随着时间的推移,他们的研究可能会使这些神秘的海洋动物不再那么神秘--同时也为我们自己的进化提供一点启示。...PC版:https://www.cnbeta.com.tw/articles/soft/1331421.htm手机版:https://m.cnbeta.com.tw/view/1331421.htm

封面图片

是什么让人类的智慧与众不同?科学家找出了解大脑的新窗口

是什么让人类的智慧与众不同?科学家找出了解大脑的新窗口研究人员发现,人类大脑增强的处理能力可能源于我们神经元结构和功能的差异。图像来源:昆士兰大脑研究所/斯蒂芬-威廉姆斯教授他们最近在《细胞报告》杂志上发表了他们的发现。昆士兰大学昆士兰大脑研究所(QBI)的斯蒂芬-威廉姆斯教授解释说,他的团队研究了人类新皮层锥体神经元嵌入其神经元网络的电特性。"为了研究人类神经元,我们从人类新皮层的小块组织中制备了活体组织片,这些组织片是从两家医院接受神经外科手术以缓解难治性癫痫或切除脑肿瘤的病人身上收集的,"威廉姆斯教授说。"我们通过对人类和啮齿类动物的锥体神经元的细胞体和细树突进行错综复杂的同步电记录来比较人类和啮齿类动物的电特性。我们的研究显示,人类和啮齿动物的新皮层锥体神经元具有共同的基本生物物理特性。例如,我们发现人类和啮齿类新皮层锥体神经元的树突都会产生树突钠尖峰,这表明整合一个神经元接收的成千上万个输入信号的机制是一致的。然而,我们发现人类新皮层锥体神经元的计算功能得到了极大的加强"。该研究的共同作者、QBI博士后HelenGooch博士表示,研究小组发现人类新皮层锥体神经元的树状结构,也就是携带电信号的树枝状延伸部分比其他哺乳动物,如啮齿类动物的树状结构更大、更复杂。Gooch博士说:"人类树突树的这种阐述伴随着在多个地点产生树突尖峰,这些尖峰积极地在神经元中扩散,以驱动每个神经元的输出信号。我们认为,这种分布式树突信息处理的增强因此可能是提高我们大脑整体处理能力的一个因素"。这种发现的转化为更好地理解人类大脑的电活动在疾病中如何受到干扰铺平了道路。母校医院神经科医生和共同作者LisaGillinder博士说:"作为临床研究人员,我们不仅对了解人类脑细胞的正常功能感到兴奋,而且通过这一领域的未来研究,我们还旨在更好地了解像癫痫这样的疾病所发生的功能变化,希望能改善治疗。"...PC版:https://www.cnbeta.com.tw/articles/soft/1333357.htm手机版:https://m.cnbeta.com.tw/view/1333357.htm

封面图片

大脑如何从恐惧和失败中学习

大脑如何从恐惧和失败中学习大脑是如何促进这种学习的呢?正强化和负强化是大脑评估系统中的重要机制。释放神经递质多巴胺的神经元通过增加或减少其活性来表示结果比预期的好或坏。同时,越来越多的证据表明,大脑的其他部分对"消极"和"积极"的处理方式是不同的。负面经历通常会引发显著的唤醒效应,激活新皮层的特定部分。这种激活有助于我们关注相关特征,并从体验中学习,这一概念被称为"厌恶学习的注意力"。由巴拉兹-汉格亚(BalazsHangya)领导的HUN-REN实验医学研究所的研究人员探索了哪些脑区和神经元类型参与了厌恶学习。他们发表在《自然-通讯》(NatureCommunications)上的研究揭示,在布罗卡对角带(HDB)水平肢中表达蛋白质副发光素(PV)的长程投射抑制性神经元在这一过程中发挥着至关重要的作用。副发光素表达轴突(黄色)与内隔膜中的胆碱能神经元(青色)接触。图片来源:PannaHegedüs。摘自Hegedüs等人,2024年,《自然通讯》。神经元功能和实验结果这些HDB-PV神经元以快速活动而闻名,它们向新皮层传递唤醒效应,并控制对认知功能至关重要的伽马振荡。因此,它们似乎是介导"厌恶学习注意"的最佳候选神经元。Hangya团队的研究表明,这些神经元确实会被实验小鼠的厌恶事件所招募,比如小鼠努力躲避的脸上突如其来的一缕空气,或者恐惧的捕食者的气味。厌恶事件的影响厌恶事件会激活一系列通路,导致大脑产生一系列后果。首先,它们会促进回避行为,从而降低承受负面影响的风险。其次,它们通过激活新皮质的相关部分来提高唤醒度和注意力,帮助机体应对情况。第三,它们有助于学习如何避免或减轻未来类似的情景。该研究的第一作者潘娜-赫格杜斯(PannaHegedüs)指出:"从负面经验中学习是一种根深蒂固的古老生存策略。它甚至可以超越正强化的效果。"Hangya的研究小组使用了一种名为光遗传学的技术,这种技术可以使特定的细胞类型(在本例中为HDB-PV神经元)对光敏感。这些技术可以通过小型光导纤维定时向脑组织输送光线,从而精确激活或抑制神经元的活动。他们发现,激活HDB-PV神经元并不会引起小鼠的回避行为,这表明该通路并不参与主动回避(如寻找庇护所),而更有可能介导由厌恶刺激引起的注意力和/或学习方面的行为。事实上,当他们用光遗传学方法阻断神经元对面部气流的反应时,小鼠无法学习辨别预测性听觉刺激,预测可能或不可能出现的气流。该实验证明,HDB-PV神经元是学习厌恶刺激的必要条件。神经元不是孤立行动的,而是具有不同输入和输出途径的复杂回路的一部分。Hangya的研究小组与同一研究所的GaborNyiri及其同事一起绘制了HDB-PV神经元的输入和输出图。他们发现,这些细胞整合了多种厌恶信息源,包括来自下丘脑和脑干剑突核的重要通路。反过来,它们又将整合后的信息传递给所谓的边缘系统,该系统广泛负责行为和情绪反应,包括对存储和回忆偶发记忆非常重要的隔海马系统。此外,抑制性HDB-PV细胞大多以这些区域中的其他抑制性神经元为目标,因此很可能解除对兴奋性细胞的抑制,让它们更加活跃--这是一种普遍存在的大脑机制,被称为"去抑制"(disinhibition)。这项研究表明,长程抑制性HDB-PV神经元会被厌恶性刺激所招募,通过提高特定目标区域的皮层兴奋性(可能是通过解除抑制)来发挥重要的联想学习功能。因此,至少对厌恶性刺激而言,HDB-PV神经元可能是'学习注意力'概念的物理基础。"在包括焦虑症和抑郁症在内的各种精神疾病中,都可以观察到积极和消极情绪处理失调的现象。因此,了解大脑如何编码负价以及负价如何促进学习至关重要,"Heggedüs总结道。编译自/scitechdaily...PC版:https://www.cnbeta.com.tw/articles/soft/1434947.htm手机版:https://m.cnbeta.com.tw/view/1434947.htm

封面图片

方向感差?大脑生物指南针可能正在复位

方向感差?大脑生物指南针可能正在复位研究报告的共同牵头人扎基-阿贾比(ZakiAjabi)说:"这就像大脑有一个机制来实施一个复位按钮,允许在混乱的情况下迅速重新确定其内部指南针的方向。"1983年才在大鼠身上发现的HD细胞,被认为是所有哺乳动物都有的。这些神经元位于几个大脑区域,它们的发射率根据头部运动而变化。只有最近神经元记录技术的进步才使研究人员有可能正确研究这些细胞的行为。有了这个,研究人员可以看到高清细胞如何支持大脑在周围环境变化后重新定位的能力。研究报告的共同作者、麦吉尔大学精神病学副教授和道格拉斯研究中心的研究员马克-布兰登说:"神经科学研究在过去十年见证了一场技术革命,使我们能够提出和回答几年前只能梦想的问题。"对大脑中一个复杂且研究不足的部分的新见解揭示了大脑如何在不断变化的环境中重新调整,以及这一过程如何在退化性神经疾病(如痴呆症,特别是阿尔茨海默病)中出错。"阿尔茨海默氏症最初自我报告的认知症状之一是人们变得迷失方向和迷路,即使是在熟悉的环境中,"布兰登说,他希望对我们的内部指南针如何工作有更好的了解,使系统中任何检测到的故障导致对神经变性的早期检测,甚至对这方面的治疗。研究人员补充说,即使动物被暴露在非自然的视觉体验中,但它与人类的生活经验有关,而且根据Ajabi的说法,"最终可能解释虚拟现实系统如何能够轻易地控制我们的方向感"。"这项工作说明实验和计算方法一起可以推进我们对驱动行为的大脑活动的理解,"共同作者、计算神经科学家和德克萨斯大学奥斯汀分校助理教授Xue-XinWei说。该研究发表在《自然》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1350793.htm手机版:https://m.cnbeta.com.tw/view/1350793.htm

封面图片

就像宇宙膨胀一样 大脑感知空间的能力会随经验增加而扩大

就像宇宙膨胀一样大脑感知空间的能力会随经验增加而扩大新的经验随着时间的推移被吸收到神经表征中,这里用一个双曲面沙漏来象征。资料来源:索尔克研究所在我们的日常运动中,我们倾向于认为我们以一种线性的方式浏览空间。然而,索尔克研究所的科学家们发现,花时间探索一个环境会导致神经连接以意想不到的方式发展。根据最近发表在《自然-神经科学》上的一项研究,在空间导航、记忆和规划中起着关键作用的海马体中的神经元以一种符合非线性双曲几何的方式表示空间。这种几何学的特点是三维空间以指数形式扩张(换句话说,它的形状就像一个扩张的沙漏的内部)。研究人员还发现,该空间的大小随着在一个地方的时间增长。而且该大小是以对数方式增长的,与大脑正在处理的信息的最大可能增长相匹配。这一发现为分析涉及学习和记忆的神经认知障碍的数据提供了宝贵的方法,例如阿尔茨海默病。从左起HuanqiuZhang和TatyanaSharpee。资料来源:索尔克研究所"研究表明,大脑并不总是以线性方式行动。相反,神经网络沿着一条不断扩大的曲线运作,这可以用双曲几何和信息理论来分析和理解,"领导这项研究的埃德温-K-亨特教席持有人、Salk教授TatyanaSharpee说。"令人振奋的是,大脑这一区域的神经反应形成了一个地图,该地图随着经验的增加而扩大,基于在某一特定地方投入的时间量。当动物在环境中跑得更慢或更快时,这种效应甚至对微小的时间偏差也有作用。"Sharpee的实验室使用先进的计算方法来更好地理解大脑的工作方式。他们最近率先使用双曲几何学来更好地理解生物信号,如气味分子,以及对气味的感知。在目前的研究中,科学家们发现,双曲几何学也能指导神经反应。感觉分子和事件的双曲地图是用双曲神经地图来感知的。空间表征动态地扩展,与大鼠探索每个环境的时间相关。而且,当老鼠在一个环境中移动得更慢时,它获得了更多关于空间的信息,这导致神经表征的增长更多。Sharpee实验室的研究生HuanqiuZhang说:"这些发现为神经表征如何随着经验而改变提供了一个新的视角。我们研究中确定的几何原理也可以指导未来了解各种大脑系统的神经活动的努力。""你会认为双曲几何只适用于宇宙尺度,但事实并非如此,"Sharpee说。"我们的大脑工作速度比光速慢得多,这可能是在可把握的空间而不是天文空间上观察到双曲效应的一个原因。接下来,我们想更多地了解大脑中的这些动态双曲表征是如何成长、互动和相互沟通的。"...PC版:https://www.cnbeta.com.tw/articles/soft/1345109.htm手机版:https://m.cnbeta.com.tw/view/1345109.htm

封面图片

科学家发现灵长类动物和其他动物之间大脑的关键差异

科学家发现灵长类动物和其他动物之间大脑的关键差异一个多国研究小组现在已经更好了解物种之间大脑皮层神经元架构的差异,这要归功于高分辨率显微镜。波鸿鲁尔大学发育神经生物学研究小组的研究人员在PetraWahle教授的领导下,已经证明灵长类动物和非灵长类动物在其结构上一个重要差异:轴突的起源,这是负责传输被称为动作电位电信号的过程。这些结果最近发表在《eLife》杂志上。研究小组研究了各种动物,包括啮齿类动物(小鼠、大鼠)、有蹄类动物(猪)、食肉动物(猫、雪貂),以及动物学灵长类的猕猴和人类。科学家们通过使用五种不同的染色技术和对超过34,000个神经元的评估得出结论,非灵长类动物和灵长类动物之间存在着物种差异。与非灵长类动物的兴奋性锥体神经元相比,灵长类动物大脑皮层外层II和III的兴奋性锥体神经元上携带轴突的树突明显较少。此外,对于抑制性中间神经元,在猫和人类物种之间发现了携带轴突的树突细胞百分比方面的巨大差异。在比较具有初级感觉和高级大脑功能的猕猴皮层区域时,没有观察到定量差异。研究人员表示,高分辨率显微镜在研究中特别重要,这使得检测轴突起源可以在微米级准确跟踪,这在传统显微镜下有时并不那么容易。通常,一个神经元将到达树突的兴奋性输入与抑制性输入进行整合,这一过程被称为体突整合。然后,神经元决定输入是否足够强大和重要,以通过动作电位传送到其他神经元和脑区。携带轴突的树突被认为是有特权的,因为这些树突的去极化输入能够直接唤起动作电位,而无需参与体细胞整合和体细胞抑制。为什么会演变出这种物种差异,以及它对灵长类动物的新皮层信息处理可能具有的潜在优势,目前尚不清楚。PC版:https://www.cnbeta.com/articles/soft/1301255.htm手机版:https://m.cnbeta.com/view/1301255.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人