大脑如何从恐惧和失败中学习

大脑如何从恐惧和失败中学习大脑是如何促进这种学习的呢?正强化和负强化是大脑评估系统中的重要机制。释放神经递质多巴胺的神经元通过增加或减少其活性来表示结果比预期的好或坏。同时,越来越多的证据表明,大脑的其他部分对"消极"和"积极"的处理方式是不同的。负面经历通常会引发显著的唤醒效应,激活新皮层的特定部分。这种激活有助于我们关注相关特征,并从体验中学习,这一概念被称为"厌恶学习的注意力"。由巴拉兹-汉格亚(BalazsHangya)领导的HUN-REN实验医学研究所的研究人员探索了哪些脑区和神经元类型参与了厌恶学习。他们发表在《自然-通讯》(NatureCommunications)上的研究揭示,在布罗卡对角带(HDB)水平肢中表达蛋白质副发光素(PV)的长程投射抑制性神经元在这一过程中发挥着至关重要的作用。副发光素表达轴突(黄色)与内隔膜中的胆碱能神经元(青色)接触。图片来源:PannaHegedüs。摘自Hegedüs等人,2024年,《自然通讯》。神经元功能和实验结果这些HDB-PV神经元以快速活动而闻名,它们向新皮层传递唤醒效应,并控制对认知功能至关重要的伽马振荡。因此,它们似乎是介导"厌恶学习注意"的最佳候选神经元。Hangya团队的研究表明,这些神经元确实会被实验小鼠的厌恶事件所招募,比如小鼠努力躲避的脸上突如其来的一缕空气,或者恐惧的捕食者的气味。厌恶事件的影响厌恶事件会激活一系列通路,导致大脑产生一系列后果。首先,它们会促进回避行为,从而降低承受负面影响的风险。其次,它们通过激活新皮质的相关部分来提高唤醒度和注意力,帮助机体应对情况。第三,它们有助于学习如何避免或减轻未来类似的情景。该研究的第一作者潘娜-赫格杜斯(PannaHegedüs)指出:"从负面经验中学习是一种根深蒂固的古老生存策略。它甚至可以超越正强化的效果。"Hangya的研究小组使用了一种名为光遗传学的技术,这种技术可以使特定的细胞类型(在本例中为HDB-PV神经元)对光敏感。这些技术可以通过小型光导纤维定时向脑组织输送光线,从而精确激活或抑制神经元的活动。他们发现,激活HDB-PV神经元并不会引起小鼠的回避行为,这表明该通路并不参与主动回避(如寻找庇护所),而更有可能介导由厌恶刺激引起的注意力和/或学习方面的行为。事实上,当他们用光遗传学方法阻断神经元对面部气流的反应时,小鼠无法学习辨别预测性听觉刺激,预测可能或不可能出现的气流。该实验证明,HDB-PV神经元是学习厌恶刺激的必要条件。神经元不是孤立行动的,而是具有不同输入和输出途径的复杂回路的一部分。Hangya的研究小组与同一研究所的GaborNyiri及其同事一起绘制了HDB-PV神经元的输入和输出图。他们发现,这些细胞整合了多种厌恶信息源,包括来自下丘脑和脑干剑突核的重要通路。反过来,它们又将整合后的信息传递给所谓的边缘系统,该系统广泛负责行为和情绪反应,包括对存储和回忆偶发记忆非常重要的隔海马系统。此外,抑制性HDB-PV细胞大多以这些区域中的其他抑制性神经元为目标,因此很可能解除对兴奋性细胞的抑制,让它们更加活跃--这是一种普遍存在的大脑机制,被称为"去抑制"(disinhibition)。这项研究表明,长程抑制性HDB-PV神经元会被厌恶性刺激所招募,通过提高特定目标区域的皮层兴奋性(可能是通过解除抑制)来发挥重要的联想学习功能。因此,至少对厌恶性刺激而言,HDB-PV神经元可能是'学习注意力'概念的物理基础。"在包括焦虑症和抑郁症在内的各种精神疾病中,都可以观察到积极和消极情绪处理失调的现象。因此,了解大脑如何编码负价以及负价如何促进学习至关重要,"Heggedüs总结道。编译自/scitechdaily...PC版:https://www.cnbeta.com.tw/articles/soft/1434947.htm手机版:https://m.cnbeta.com.tw/view/1434947.htm

相关推荐

封面图片

科学家们发现了一种新的日常节奏 使人们了解到大脑活动是如何被微调的

科学家们发现了一种新的日常节奏使人们了解到大脑活动是如何被微调的该结果发表在《PLOS生物学》杂志上,可能有助于解释细微的突触变化如何改善人类的记忆。来自国家神经疾病和中风研究所(NINDS)的研究人员领导了这项研究,该研究所是国家卫生研究院的一部分。"抑制对大脑功能的各个方面都很重要。但二十多年来,大多数睡眠研究都集中在了解兴奋性突触上,"NINDS的高级调查员WeiLu博士说。"这是一项及时的研究,试图了解睡眠和清醒如何调节抑制性突触的可塑性"。Lu博士实验室的博士后WuKunwei调查了小鼠在睡眠和清醒时抑制性突触的情况。从海马体(一个参与记忆形成的大脑区域)的神经元进行的电记录显示了一种以前未知的活动模式。在清醒状态下,稳定的"强直"抑制活动增加,但快速的"阶段性"抑制活动减少。他们还发现,在清醒的小鼠神经元中,抑制性电反应的活动依赖性增强得多,这表明清醒,而不是睡眠,可能在更大程度上加强这些突触。抑制性神经元使用神经递质γ-氨基丁酸(GABA)来减少神经系统的活动。这些神经元在抑制性突触处将GABA分子释放到突触裂隙中,突触裂隙是神经元之间神经递质扩散的空间。这些分子与邻近的兴奋性神经元表面的GABAA受体结合,使其减少发射次数。进一步的实验表明,清醒时的突触变化是由α5-GABAA受体数量增加所驱动的。当受体在清醒小鼠体内被阻断时,活动依赖性的相位电反应的增强就会减弱。这表明,清醒时GABAA受体的积累可能是建立更强大、更有效的抑制性突触的关键,这是一个被称为突触可塑性的基本过程。"当你在白天学习新信息时,神经元受到来自大脑皮层和许多其他区域的兴奋性信号的轰击。"Lu博士说:"为了将这些信息转变为记忆,你首先需要调节和完善它--这就是抑制的作用。"先前的研究表明,海马体的突触变化可能是由抑制性中间神经元发出的信号驱动的,这种特殊类型的细胞在大脑中只占大约10-20%的神经元。在海马中有超过20种不同的中间神经元亚型,但最近的研究强调了两种类型,即被称为副白蛋白和体蛋白,它们关键性地参与了突触调节。为了确定哪种神经元负责他们所观察到的可塑性,Lu博士的团队使用了光遗传学,这是一种使用光来打开或关闭细胞的技术,并发现清醒状态导致更多的α5-GABAA受体和来自副白蛋白的更强连接,而不是体蛋白的神经元。人类和小鼠拥有类似的神经回路,是记忆储存和其他基本认知过程的基础。这种机制可能是抑制性输入精确控制神经元之间和整个大脑网络的信息起伏的一种方式。Lu博士说:"抑制实际上是相当强大的,因为它允许大脑以一种微调的方式执行,这基本上是所有认知的基础。"由于抑制对大脑功能的几乎每一个方面都至关重要,这项研究不仅有助于帮助科学家了解睡眠-觉醒周期,而且有助于了解植根于大脑节律异常的神经系统疾病,如癫痫。在未来,Lu博士的研究小组计划探索GABAA受体贩运到抑制性突触的分子基础。这项研究的部分资金来自于美国国家疾病预防控制中心的院内研究项目。...PC版:https://www.cnbeta.com.tw/articles/soft/1335699.htm手机版:https://m.cnbeta.com.tw/view/1335699.htm

封面图片

糖影响大脑"可塑性" 有助于学习、记忆和恢复

糖影响大脑"可塑性"有助于学习、记忆和恢复复杂的糖分子控制着神经元周围网(图中绿色)的形成,这些网环绕着神经元,帮助稳定大脑中的连接。资料来源:LindaHsieh-Wilson实验室研究人员于8月16日在美国化学学会(ACS)秋季会议上展示了他们的研究成果。美国化学学会2023年秋季会议将于8月13-17日以虚拟和现场相结合的方式举行,大约有12000个关于各种科学主题的报告。复合糖和大脑可塑性给水果、糖果或蛋糕增添甜味的糖实际上只是多种糖类中的几个简单品种。当它们串联在一起时,就能形成各种各样的复合糖。GAG是通过连接其他化学结构(包括硫酸基团)而形成的。"如果我们研究大脑中GAGs的化学结构,就能了解大脑的可塑性,并希望将来能利用这些信息恢复或增强记忆中的神经连接,"在会议上介绍这项研究的项目首席研究员琳达-谢-威尔逊(LindaHsieh-Wilson)博士说。她解释说:"这些糖能调节许多蛋白质,它们的结构在发育过程中和疾病发生时会发生变化。"谢-威尔逊现就职于加州理工学院(Caltech)。在大脑中,最常见的GAG形式是硫酸软骨素,它存在于大脑许多细胞周围的细胞外基质中。硫酸软骨素还能形成被称为"神经元周围网"的结构,这种结构包裹着单个神经元,并稳定它们之间的突触连接。硫酸化模式及其影响改变GAG功能的一种方法是硫酸化图案,即糖链上的硫酸基团模式。谢-威尔逊的团队对这些硫酸化模式如何发生改变,以及它们可能如何调控神经可塑性和社会记忆等生物过程很感兴趣。有朝一日,研究人员也可以通过调节这些功能来治疗中枢神经系统损伤、神经退行性疾病或精神疾病。当研究小组删除了小鼠体内负责形成硫酸软骨素两种主要硫酸化模式的Chst11基因后,小鼠的神经元周围网出现了缺陷。然而,在没有硫酸化图案的情况下,神经元网络的数量实际上增加了,从而改变了神经元之间突触连接的类型。此外,这些小鼠无法辨认出它们以前接触过的小鼠,这表明这些模式会影响社会记忆。记忆和治疗的潜力有趣的是,这些网络可能比以前认为的更具活力--它们可能在儿童期和成年期都发挥着作用。当研究人员在成年小鼠的大脑中特异性地靶向Chst11时,他们发现它对神经周细胞网和社会记忆产生了同样的影响。谢-威尔逊说:"这一结果表明,有可能在青春期或成年期操纵这些网络,从而有可能重新连接或加强某些突触连接。"在最近的其他实验中,研究小组希望了解GAGs及其硫酸化模式如何影响轴突再生,或神经元在损伤后的自我重建能力。研究人员目前正在努力确定能与特定硫酸化图案结合的蛋白质受体。到目前为止,他们已经发现,特定基团会导致这些受体在细胞表面聚集在一起,抑制再生。阻断这一过程可以创造出促进轴突再生的工具或治疗方法。Hsieh-Wilson说,对这一过程有更深入的了解有朝一日可以帮助修复某些神经退行性疾病或中风造成的损伤。...PC版:https://www.cnbeta.com.tw/articles/soft/1377789.htm手机版:https://m.cnbeta.com.tw/view/1377789.htm

封面图片

睡得好与学得少 新研究发现睡眠状况对学习的影响

睡得好与学得少新研究发现睡眠状况对学习的影响想象一下,你是一名学生,现在是期末考试周,你正在准备一场重要的考试:是通宵达旦还是好好休息?许多在考试中昏昏沉沉、目光呆滞的人都知道,睡眠不足会让人格外难以保留信息。密歇根大学的两项新研究揭示了这一现象的原因,以及在睡眠和睡眠剥夺期间大脑内部发生了什么,从而帮助或损害了记忆的形成。特定的神经元可以对特定的刺激进行调谐。例如,迷宫中的老鼠一旦到达迷宫中的特定位置,其神经元就会亮起。这些神经元被称为"位置神经元",在人体内也很活跃,可以帮助人们在环境中导航。但睡眠时会发生什么呢?麻省大学医学院麻醉学副教授卡姆兰-迪巴(KamranDiba)博士说:"如果该神经元在睡眠期间有反应,你能从中推断出什么呢?"由迪巴和前研究生库罗什-马布迪(KouroshMaboudi)博士领导的一项研究对海马体中的神经元进行了研究,发现了一种在动物熟睡时可视化与某个位置相关的神经元模式调整的方法。在安宁状态和睡眠期间,海马体会在数小时内每隔几秒钟产生一种名为"尖波涟漪"的电活动。研究人员对这些涟漪的同步性和传播距离感到非常好奇,它们似乎在将信息从大脑的一个部分传播到另一个部分。这些跃迁被认为是神经元形成和更新记忆(包括位置记忆)的过程。在这项研究中,研究小组在老鼠完成一个新迷宫后,测量了老鼠睡眠期间的大脑活动。利用一种名为贝叶斯学习的统计推理,他们首次能够追踪哪些神经元会对迷宫中的哪些位置做出反应。"比方说,一个神经元偏好迷宫的某个角落。在睡眠过程中,我们可能会看到该神经元与其他表现出类似偏好的神经元一起激活。但有时,与其他区域相关的神经元可能会与该细胞共同激活。"迪巴说:"我们随后发现,当我们把它放回迷宫时,神经元的位置偏好会发生变化,这取决于它们在睡眠时与哪些细胞一起激活。"通过这种方法,他们可以实时观察神经元的可塑性或表象漂移。该研究还进一步证实了一个由来已久的理论,即睡眠期间神经元的重新激活是睡眠对记忆非常重要的部分原因。鉴于睡眠的重要性,迪巴的团队希望研究在睡眠不足的情况下大脑会发生什么变化。第二项研究同样发表在《自然》杂志上,由迪巴和前研究生巴蓬-吉里(BapunGiri)博士领导的研究小组比较了神经元再激活的数量--即在迷宫探索过程中发射的场所神经元在休息时会自发地再次发射,并比较了睡眠时与失眠时神经元再激活的顺序(量化为重放)。他们发现,参与重新激活和重放迷宫体验的神经元的发射模式在睡眠期间比睡眠不足期间更高。与睡眠不足相对应的是,尖波波纹的出现率相似或更高,但波幅较低,波纹的功率也较低。迪巴说:"然而,在几乎一半的病例中,锐波涟漪时迷宫体验的重新激活在睡眠剥夺期间被完全抑制。当睡眠不足的大鼠能够补觉时,虽然再激活功能略有回升,但却无法与正常睡眠的大鼠相比。此外,重放功能也受到了类似的损害,但当失去的睡眠得到恢复后,重放功能就不会恢复了。"由于重新激活和重放对记忆非常重要,因此研究结果证明了睡眠不足对记忆的不利影响。迪巴的团队希望继续研究睡眠过程中记忆处理的性质、为什么需要重新激活记忆以及睡眠压力对记忆的影响。编译来源:ScitechDailyDOI:10.1038/s41586-024-07397-xDOI:10.1038/s41586-024-07538-2...PC版:https://www.cnbeta.com.tw/articles/soft/1435702.htm手机版:https://m.cnbeta.com.tw/view/1435702.htm

封面图片

科学家发现灵长类动物和其他动物之间大脑的关键差异

科学家发现灵长类动物和其他动物之间大脑的关键差异一个多国研究小组现在已经更好了解物种之间大脑皮层神经元架构的差异,这要归功于高分辨率显微镜。波鸿鲁尔大学发育神经生物学研究小组的研究人员在PetraWahle教授的领导下,已经证明灵长类动物和非灵长类动物在其结构上一个重要差异:轴突的起源,这是负责传输被称为动作电位电信号的过程。这些结果最近发表在《eLife》杂志上。研究小组研究了各种动物,包括啮齿类动物(小鼠、大鼠)、有蹄类动物(猪)、食肉动物(猫、雪貂),以及动物学灵长类的猕猴和人类。科学家们通过使用五种不同的染色技术和对超过34,000个神经元的评估得出结论,非灵长类动物和灵长类动物之间存在着物种差异。与非灵长类动物的兴奋性锥体神经元相比,灵长类动物大脑皮层外层II和III的兴奋性锥体神经元上携带轴突的树突明显较少。此外,对于抑制性中间神经元,在猫和人类物种之间发现了携带轴突的树突细胞百分比方面的巨大差异。在比较具有初级感觉和高级大脑功能的猕猴皮层区域时,没有观察到定量差异。研究人员表示,高分辨率显微镜在研究中特别重要,这使得检测轴突起源可以在微米级准确跟踪,这在传统显微镜下有时并不那么容易。通常,一个神经元将到达树突的兴奋性输入与抑制性输入进行整合,这一过程被称为体突整合。然后,神经元决定输入是否足够强大和重要,以通过动作电位传送到其他神经元和脑区。携带轴突的树突被认为是有特权的,因为这些树突的去极化输入能够直接唤起动作电位,而无需参与体细胞整合和体细胞抑制。为什么会演变出这种物种差异,以及它对灵长类动物的新皮层信息处理可能具有的潜在优势,目前尚不清楚。PC版:https://www.cnbeta.com/articles/soft/1301255.htm手机版:https://m.cnbeta.com/view/1301255.htm

封面图片

科学家发现成人大脑中生成新的神经元的原理

科学家发现成人大脑中生成新的神经元的原理齿状回(大脑颞叶海马结构的一部分)中新产生的神经元(红色)与细胞核(蓝色)和未成熟神经元的标记物(绿色)。资料来源:Knobloch实验室-UNIL成年大脑的一些区域含有静止的或休眠的神经干细胞,它们有可能被重新激活以形成新的神经元。然而,人们对从静止状态到增殖的过渡仍然知之甚少。由日内瓦大学(UNIGE)和洛桑大学(UNIL)的科学家领导的一个团队发现了细胞代谢在这一过程中的重要性,并确定了如何唤醒这些神经干细胞并重新激活它们。生物学家们成功地增加了成年甚至老年小鼠大脑中新神经元的数量。这些结果对治疗神经退行性疾病很有希望,将在《科学进展》杂志上发现。这种生物现象被称为成人神经生成,对学习和记忆过程等特定功能非常重要。然而,在成人大脑中,这些干细胞变得更加沉默或''休眠'',并降低了它们的更新和分化能力。因此,随着年龄的增长,神经发生明显减少。日内瓦大学理学院分子和细胞生物学系名誉教授让-克劳德-马蒂努(Jean-ClaudeMartinou)和生物和医学系生物医学科学副教授马伦-克诺布洛赫(MarlenKnobloch)的实验室发现了一种代谢机制,成年NSCs可以从其休眠状态出现并变得活跃。"我们发现线粒体--细胞内产生能量的细胞器--参与调节成年NSCs的激活水平,"UNIL的研究员FrancescoPetrelli和ValentinaScanDELLa,这项研究的共同第一作者表示。线粒体丙酮酸转运体(MPC)是Martinou教授小组11年前发现的一种蛋白质复合物,在这种调节中发挥着特殊作用。它的活性影响着细胞可以使用的代谢选择。通过了解区分活跃细胞和休眠细胞的代谢途径,科学家可以通过改变线粒体代谢来唤醒休眠细胞。现在,生物学家已经通过使用化学抑制剂或通过生成Mpc1基因的突变小鼠来阻断MPC的活性。利用这些药理学和遗传学方法,科学家们能够激活休眠的NSCs,从而在成年甚至老年小鼠的大脑中产生新的神经元。通过这项研究工作表明,代谢途径的重定向能够直接影响成年NSCs的活动状态,从而影响新神经元的生成数量,该研究的共同第一作者Knobloch教授总结说。"这些结果为细胞代谢在调节神经发生方面的作用提供了新的启示。从长远来看,这些结果可能会带来对抑郁症或神经退行性疾病等疾病的潜在治疗方案。"该研究的共同主要作者Jean-ClaudeMartinou总结道。...PC版:https://www.cnbeta.com.tw/articles/soft/1348035.htm手机版:https://m.cnbeta.com.tw/view/1348035.htm

封面图片

“细胞电耦合”:关于我们大脑如何运作的突破性假设

“细胞电耦合”:关于我们大脑如何运作的突破性假设麻省理工学院、伦敦城市大学和约翰·霍普金斯大学的研究人员发表的一篇新论文认为,网络的电场会影响神经元亚细胞成分的物理配置,以优化网络的稳定性和效率,作者将这一假设称为“细胞电”耦合。”EarlK.Miller就他最近在Picower学习与记忆研究所的工作发表了演讲。图片来源:麻省理工学院Picower研究所“大脑正在处理的信息在将网络微调到分子水平方面发挥着作用,”麻省理工学院皮考尔学习与记忆研究所的皮考尔教授厄尔·K·米勒(EarlK.Miller)说,他是《进步》杂志上这篇论文的合著者。与麻省理工学院和伦敦城市大学的DimitrisPinotsis副教授以及约翰·霍普金斯大学的GeneFridman教授一起获得神经生物学博士学位。“大脑会适应不断变化的世界,”皮诺西斯说。“它的蛋白质和分子也会发生变化。它们可能带有电荷,需要跟上使用电信号处理、存储和传输信息的神经元。与神经元电场的相互作用似乎是必要的。”米勒实验室的一个主要重点是研究工作记忆等高级认知功能如何快速、灵活且可靠地从数百万个单个神经元的活动中产生。神经元能够通过创建和删除称为突触的连接以及加强或削弱这些连接来动态形成电路。但是,米勒说,这仅仅形成了信息可以流动的“路线图”。米勒发现,共同代表一种或另一种想法的特定神经回路是通过有节奏的活动来协调的,更通俗地称为不同频率的“脑电波”。快速的“伽玛”波有助于传输我们视觉中的图像(例如松饼),而较慢的“贝塔”波可能会承载我们对该图像的更深入的思考(例如“太多卡路里”)。米勒的实验室表明,在适当的时机,这些波的爆发可以携带预测,从而能够在工作记忆中写入、保留和读出信息。当工作记忆崩溃时,它们也会崩溃。该实验室报告的证据表明,大脑可能会明显地操纵特定物理位置的节律,以进一步组织神经元以实现灵活的认知,这一概念称为“空间计算”。该实验室最近的其他工作表明,虽然网络中单个神经元的参与可能是变化无常且不可靠的,但它们所属的网络携带的信息稳定地由它们的集体活动产生的整体电场表示。在这项新研究中,作者将这种协调神经网络的节律性电活动模型与电场可以在分子水平上影响神经元的其他证据结合起来。例如,研究人员研究了突触耦合,其中神经元通过膜的接近程度影响彼此的电特性,而不是仅仅依赖于突触之间的电化学交换。这种电串扰会影响神经功能,包括它们何时以及是否将电信号传递给电路中的其他神经元。米勒、皮诺西斯和弗里德曼还引用了研究,显示电对细胞及其成分的其他影响,包括神经发育如何由场引导以及微管可以通过它们排列。如果大脑在电场中携带信息,并且这些电场能够配置神经元和大脑中形成网络的其他元素,那么大脑很可能会使用这种能力。作者表示,大脑可以利用场来确保网络发挥其应有的作用。用“电视迷”的话来说,电视网络的成功不仅仅在于它能够向数百万家庭传输清晰的信号。同样重要的是细节,比如每个观众家庭如何布置电视、音响系统和客厅家具,以最大限度地提高体验。米勒说,无论是在这个比喻中还是在大脑中,网络的存在都会激励个体参与者配置自己的基础设施以实现最佳参与。作者在论文中写道:“细胞电耦合将介观和宏观水平的信息连接到蛋白质的微观水平,而蛋白质是记忆的分子基础。”这篇文章阐述了细胞电偶联的启发逻辑。“我们提供了一个任何人都可以测试的假设,”米勒说。...PC版:https://www.cnbeta.com.tw/articles/soft/1366931.htm手机版:https://m.cnbeta.com.tw/view/1366931.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人