MPQ团队利用单个铷原子产生了数量破纪录的量子纠缠光子簇

MPQ团队利用单个铷原子产生了数量破纪录的量子纠缠光子簇在2022年8月24日发表于《自然》杂志上的一篇文章中,来自马克斯·普朗克量子光学研究所(MPQ)的一支团队,详细介绍了一种高效驱动光量子纠缠的新方法。虽然听起来有些违反直觉,但数十年来的量子实验已经充分证明——无论相距多远,改变其中一个结对粒子的状态、就会同步改变另一粒子的状态。一个铷原子被困在一个由两个高反射镜组成的光学谐振器中(渲染图,来自:MPQ)受量子纠缠现象的启发,近年来已有大量团队投入新兴商业技术的开发。真空状态下的光学谐振器,单个铷原子被困于支架内的锥形镜之间。以量子计算器为例,其中纠缠的例子,就可用于存储和存储信息的量子比特。研究配图1-实验设置/协议概述为实现最佳效果,量子计算机需要用到能够产生大量粒子、并将之纠缠到一起的装置,但这显然并非易事。研究配图2-GHz状态好消息是,MPQ研究人员找到了一种更可靠的量子纠缠方法,并成功地将14个光子纠缠到了一起——这也是迄今为止规模最喜人的“光子簇”。研究配图3-集簇状态具体说来是,研究团队从单独的铷原子开始上手,将它困在一个以特定模式反射电磁波的光学腔中。当被特定频率的激光击中时,原子就被赋予了准备就绪的给定特定。研究配图4-测得N光子重合率接着研究人员向它发射另一调制脉冲,以使原子发射一个与它纠缠的光子。通过重复该过程,原子便可在每个光子发射之间旋转,直到产生一整条相互纠缠的“光子链”。扩展数据图1-详细的实验序列更棒的是,该过程较现有技术的效率更加出众——产生光子的时间占比超过43%,近乎每两次光脉冲就能产生一个光子。扩展数据图2-奇偶性振荡尽管对于长期关注量子纪录的朋友们来说,14个纠缠量子可能听起来不算多——毕竟此前科学家已设法通过气体实验、实现了数万亿个原子的纠缠——但此类系统并不适用于量子计算机或量子通信。扩展数据图3-发射器的相干特性相比之下,通过常规技术手段产生的光子,其量子应用也要简单得多。更何况这项新技术颇具效率优势,意味着后续能够轻松扩展光子的产量。下一步,MPQ团队计划开展至少利用两个原子的新实验。扩展数据图4-vSTIRAP过程引发的失真最后,有关这项研究的详情,已发表于近日出版的《Nature》期刊上,原标题为《Efficientgenerationofentangledmultiphotongraphstatesfromasingleatom》。PC版:https://www.cnbeta.com/articles/soft/1309989.htm手机版:https://m.cnbeta.com/view/1309989.htm

相关推荐

封面图片

科学家开发出能产生量子纠缠光子网的超薄超表面

科学家开发出能产生量子纠缠光子网的超薄超表面桑迪亚国家实验室和马克斯-普朗克研究所的科学家们已经开发出一种方法,它可以使用比平时简单得多的设置来生产量子纠缠光子网。其关键则是一个厚度只有纸的1/100的精确图案表面,它可以取代一屋子的光学设备。PC版:https://www.cnbeta.com/articles/soft/1316551.htm手机版:https://m.cnbeta.com/view/1316551.htm

封面图片

【研究:量子纠缠光子对支付交易进行加密】

【研究:量子纠缠光子对支付交易进行加密】2023年07月05日03点38分老不正经报道,维也纳量子科学技术中心7月4日发表的一篇题​​为“量子数字支付的演示”的论文中,研究人员展示了可能是第一个基于量子力学的“无条件安全”数字交易系统。为了实现这一目标,研究人员使用一对量子纠缠光子对支付交易进行加密。通过这种纠缠,其中一个光子的任何状态变化都会准确地反映在另一个光子中,即使相隔一定距离,研究人员也能够确保任何修改交易的尝试都会受到量子力学本身性质的阻碍。研究人员称,我们展示了量子光如何通过生成本质上不可伪造的量子密码来确保日常数字支付的安全。量子纠缠最有用的特征之一是,在测量纠缠物体之前,我们无法知道它处于什么状态。

封面图片

量子纠缠光子在波士顿街道下飞行了35公里

量子纠缠光子在波士顿街道下飞行了35公里访问:NordVPN立减75%+外加3个月时长另有NordPass密码管理器就像我们所熟知的互联网一样,量子网络通过光--这里是量子纠缠光子--来发送信息。但是,它们需要"中继器",以防止这些光子像光通常所做的那样发生长距离散射,而且中继器必须能够在不破坏光子纠缠和修改信息的情况下发送光子。本次演示中部署的量子链路图。携带与量子存储器纠缠的量子信息的光子穿过剑桥和波士顿的多个街区,行程超过35公里,然后返回哈佛大学,在另一个实验室中将其纠缠转移到另一个存储器上。哈佛大学和AWS称,这些实验节点利用钻石中的空腔"捕获光线并迫使其与量子存储器相互作用"。这些节点可以利用现有的纳米加工技术批量生产。在实验过程中,研究小组将一个量子比特编码成一个光子,并将其从哈佛大学实验室的量子存储器上弹出。以下是文档摘录:当光子与量子存储器相互作用时,它就会与存储器纠缠在一起--这意味着对光子或存储器进行的测量都会提供对方的状态信息(从而修改对方的状态)。然而,光子并没有被测量(从而提取信息),而是经过量子频率转换,从可见光频率(量子存储器工作的频率)转换到电信频率(光纤中的损耗最小的频率)。然后,(现在是电信频率的)光子在地下光纤网络中来回穿梭,最后返回哈佛大学,并在那里被转换回可见光频率。最后,光子从第二个存储器弹出后,被送往一个探测器,探测器会记录光子的存在,但不会显示光中包含的任何潜在量子信息。然后,光子从可见光频率转换为电信频率,再反弹到不同的实验室,从而完成旅程。AWS称,早期实验显示,量子纠缠光子的传输距离超过35公里。纠缠光子的存储时间超过一秒,该公司称这"足以让光传播30多万公里",足以绕地球7.5圈。网络中使用的设备示意图。位于一个光子设备(左下)内的SiV与光子纠缠,光子穿过电信光纤(上),然后与位于不同位置(右)的量子存储器相互作用。最终,两个空间上分离的量子存储器之间产生了纠缠。能源部解释说,量子网络与量子计算的原理相同,都是利用光子的量子态来携带信息。量子网络的实验已经进行了一段时间了,但还没有人制造出完全商业化的版本。AWS表示,在其量子网络具备可扩展性和商业可行性之前,还需要进行更多改进。到目前为止,它的速度还很慢,而且一次只能发送一个量子存储器。...PC版:https://www.cnbeta.com.tw/articles/soft/1431207.htm手机版:https://m.cnbeta.com.tw/view/1431207.htm

封面图片

揭开量子世界的神秘面纱:科学家实时捕捉光子的量子纠缠

揭开量子世界的神秘面纱:科学家实时捕捉光子的量子纠缠一项基于先进照相技术的新技术展示了一种快速高效地重建纠缠粒子完整量子态的方法。渥太华大学的研究人员与罗马萨皮恩扎大学的达尼洛-齐亚(DaniloZia)和法比奥-斯基亚里诺(FabioSciarrino)合作,最近展示了一种新技术,能够实时可视化两个纠缠光子(构成光的基本粒子)的波函数。用一双鞋作比喻,纠缠的概念可以比作随机选择一只鞋。当你辨认出一只鞋子的那一刻,另一只鞋子的性质(是左鞋还是右鞋)就会立刻被分辨出来,而不管它在宇宙中的位置如何。然而,耐人寻味的是,在观察的确切时刻之前,与识别过程相关的固有不确定性。波函数是量子力学的核心原理,它提供了对粒子量子态的全面理解。例如,在鞋子的例子中,鞋子的"波函数"可以携带左右、大小、颜色等信息。更准确地说,波函数能让量子科学家预测对量子实体进行各种测量的可能结果,如位置、速度等。照片(从左到右):AlessioD'Errico博士、EbrahimKarimi博士和NazaninDehghan。图片来源:渥太华大学这种预测能力非常宝贵,尤其是在飞速发展的量子技术领域,了解量子计算机产生或输入的量子态,将使我们能够测试计算机本身。此外,量子计算中使用的量子态极其复杂,涉及许多可能表现出强非局部相关性(纠缠)的实体。了解这样一个量子系统的波函数是一项极具挑战性的任务--这也被称为量子态层析成像或量子层析成像。采用标准方法(基于所谓的投影运算)进行全面层析需要大量测量,而测量次数会随着系统复杂度(维度)的增加而迅速增加。该研究小组以前用这种方法进行的实验表明,表征或测量两个纠缠光子的高维量子态可能需要几个小时甚至几天的时间。此外,结果的质量对噪声非常敏感,并取决于实验装置的复杂程度。量子层析成像的投影测量方法可以理解为观察从独立方向投射到不同墙壁上的高维物体的影子。研究人员所能看到的只是这些阴影,而从这些阴影中,他们可以推断出整个物体的形状(状态)。例如,在CT扫描(计算机断层扫描)中,可以从一组二维图像中重建三维物体的信息。不过,在经典光学中,还有另一种重建三维物体的方法。这种方法被称为数字全息术,其基础是通过将物体散射的光与参考光进行干涉而获得的单幅图像,即干涉图。由加拿大结构量子波研究主席、渥太华量子技术联合研究所(NexQT)联合主任、理学院副教授EbrahimKarimi领导的研究小组将这一概念扩展到了双光子的情况。重构双光子态需要将其与假定的众所周知的量子态叠加,然后分析两个光子同时到达的位置的空间分布。对同时到达的两个光子进行成像被称为巧合成像。这些光子可能来自参考源,也可能来自未知源。量子力学指出,光子的来源无法确定。这就产生了一种干涉模式,可用于重建未知波函数。先进的照相机能以纳秒(1,000,000,000秒)的分辨率记录每个像素上的事件,使这项实验成为可能。论文共同作者之一、渥太华大学博士后AlessioD'Errico博士强调了这一创新方法的巨大优势:"这种方法比以前的技术快了数倍,只需要几分钟或几秒钟,而不是几天。重要的是,检测时间不受系统复杂性的影响--这是解决投影层析成像中长期存在的可扩展性难题的一种方法。"这项研究的影响不仅限于学术界。它有可能加速量子技术的进步,如改进量子态表征、量子通信和开发新的量子成像技术。...PC版:https://www.cnbeta.com.tw/articles/soft/1387125.htm手机版:https://m.cnbeta.com.tw/view/1387125.htm

封面图片

量子技术新突破:研究人员成功地制造出产生两束纠缠光的光源

量子技术新突破:研究人员成功地制造出产生两束纠缠光的光源对研究这种现象的兴趣是由于其在加密、通信和量子计算方面的巨大应用潜力。困难的是,当这些系统与它们周围的环境相互作用时,它们几乎立即变得不相干了。在巴西圣保罗大学物理研究所(IF-USP)的原子和光的相干操纵实验室(LMCAL)的最新研究中,研究人员成功地开发了一个产生两束纠缠光的光源。有关这项研究的文章最近发表在《物理评论快报》杂志上。"这个光源是一个光学参数振荡器,或称OPO,它通常由两个镜子之间的非线性光学响应晶体组成,形成一个光学腔体。当一束明亮的绿色光束照射在仪器上时,晶体-镜子动态产生两束具有量子相关性的光束,"文章的最后一位作者、物理学家HansMarinFlorez说。该研究中使用的光学参数振荡器(OPO)。图像来源:AlvaroMontañaGuerrero问题是,基于晶体的OPO发出的光不能与量子信息背景下的其他感兴趣的系统互动,如冷原子、离子或芯片,因为其波长与相关系统的波长不一样。"我们小组在以前的工作中表明,原子本身可以被用作媒介,而不是晶体。因此,我们制作了第一个基于铷原子的OPO,其中两个光束是强烈的量子相关的,并获得了一个可以与其他有可能作为量子存储器的系统互动的源,如冷原子,"Florez说。然而,这并不足以表明这些光束是纠缠在一起的。除了强度之外,与光波同步有关的光束相位也需要显示出量子关联性。他说:"这正是我们在《物理评论快报》报道的新研究中所实现的。我们重复了同样的实验,但增加了新的检测步骤,使我们能够测量所产生的场的振幅和相位中的量子相关性。结果,我们能够证明它们是纠缠在一起的。此外,该检测技术使我们能够观察到,纠缠结构比通常所描述的要丰富。我们实际上产生的是一个由四个纠缠谱带组成的系统,而不是两个相邻的谱带被纠缠在一起。""在这种情况下,波的振幅和相位是纠缠在一起的。这在许多处理和传输量子编码信息的协议中是基本的。除了这些可能的应用,这种光源还可以用于计量学。强度的量子关联导致强度波动的大大减少,这可以提高光学传感器的灵敏度。想象一下,在一个聚会上,每个人都在说话,你听不到房间另一边的人说话。如果噪音充分降低,如果每个人都停止说话,你就可以在很远的地方听到某人说的话。"他补充说,提高用于测量人脑发出的α波的原子磁力计的灵敏度是潜在的应用之一。"文章还指出,与晶体OPO相比,铷质OPO还有一个优势。"Florez说:"晶体OPO必须要有镜,使光在腔内保持更长的时间,这样相互作用就会产生量子相关的光束,而使用原子介质,在其中产生的两个光束比晶体更有效,避免了需要镜子来禁锢光这么长的时间。"在他的小组进行这项研究之前,其他小组曾试图用原子制造OPO,但未能证明所产生的光束的量子相关性。新的实验表明,系统中没有内在的限制来阻止这种情况的发生。研究人员发现,原子的温度是观察量子关联的关键。显然,其他研究使用了更高的温度,这让他们无法观察到相关关系。...PC版:https://www.cnbeta.com.tw/articles/soft/1337695.htm手机版:https://m.cnbeta.com.tw/view/1337695.htm

封面图片

量子照明:先进设备可产生单光子并用于编码信息

量子照明:先进设备可产生单光子并用于编码信息洛斯阿拉莫斯国家实验室(LosAlamosNationalLaboratory)的科学家团队将两种不同的原子薄材料堆叠在一起,实现了一种手性量子光源。这种量子光发射器的新方法可产生圆偏振单光子流或光粒子流,可用于一系列量子信息和通信应用。洛斯阿拉莫斯国家实验室科学家HanHtoon说:"我们的研究表明,单层半导体有可能在没有外部磁场的帮助下发射圆偏振光。以前只有通过大型超导磁体产生的高磁场、将量子发射器与非常复杂的纳米级光子学结构耦合或向量子发射器注入自旋偏振载流子才能实现这种效果,而我们的近程效应方法具有低成本制造和可靠性高的优势"。偏振态是对光子进行编码的一种手段,因此这一成果是朝着量子密码学或量子通信方向迈出的重要一步。有了一个既能产生单光子流又能引入偏振的光源,基本上就把两种设备合二为一了。手性量子光发射是在两种不同层状材料(一种单层半导体和一种反铁磁晶体)的叠层中形成的,从材料中升起,可用于量子信息和通信应用。资料来源:洛斯阿拉莫斯国家实验室压痕是光致发光的关键正如发表在《自然-材料》(NatureMaterials)杂志上的一篇论文所描述的,研究团队在集成纳米技术中心(CenterforIntegratedNanotechnologies)工作,将单分子厚的二硒化钨半导体层堆叠在更厚的三硫化镍磷磁性半导体层上。博士后助理研究员李向志利用原子力显微镜在这层薄薄的材料上制造出了一系列纳米级的压痕。这些压痕的直径约为400纳米,因此200多个这样的压痕可以很容易地穿过一根头发的宽度。事实证明,当激光聚焦在这堆材料上时,原子显微镜工具产生的压痕会产生两种效果。首先,压痕在势能图中形成了一个井或凹陷。二硒化钨单层的电子落入凹陷处。这刺激了井中单光子流的发射。纳米压痕还破坏了底层三硫化二磷镍晶体的典型磁性,产生了一个局部磁矩,从材料中指向上方。该磁矩使发射的光子产生圆极化。为了在实验中证实这一机制,研究小组首先与位于洛斯阿拉莫斯的国家高磁场实验室脉冲磁场设备合作,进行了高磁场光学光谱实验。然后,研究小组与瑞士巴塞尔大学合作测量了局部磁矩的微小磁场。实验证明,研究小组成功地展示了一种控制单光子流偏振态的新方法。量子信息编码研究小组目前正在探索如何通过施加电刺激或微波刺激来调节单光子的圆偏振程度。这种能力将提供一种将量子信息编码到光子流中的方法。进一步将光子流耦合到波导--光的微观管道--将提供允许光子单向传播的光子电路。这种电路将成为超安全量子互联网的基本构件。...PC版:https://www.cnbeta.com.tw/articles/soft/1379591.htm手机版:https://m.cnbeta.com.tw/view/1379591.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人