量子技术新突破:研究人员成功地制造出产生两束纠缠光的光源

量子技术新突破:研究人员成功地制造出产生两束纠缠光的光源对研究这种现象的兴趣是由于其在加密、通信和量子计算方面的巨大应用潜力。困难的是,当这些系统与它们周围的环境相互作用时,它们几乎立即变得不相干了。在巴西圣保罗大学物理研究所(IF-USP)的原子和光的相干操纵实验室(LMCAL)的最新研究中,研究人员成功地开发了一个产生两束纠缠光的光源。有关这项研究的文章最近发表在《物理评论快报》杂志上。"这个光源是一个光学参数振荡器,或称OPO,它通常由两个镜子之间的非线性光学响应晶体组成,形成一个光学腔体。当一束明亮的绿色光束照射在仪器上时,晶体-镜子动态产生两束具有量子相关性的光束,"文章的最后一位作者、物理学家HansMarinFlorez说。该研究中使用的光学参数振荡器(OPO)。图像来源:AlvaroMontañaGuerrero问题是,基于晶体的OPO发出的光不能与量子信息背景下的其他感兴趣的系统互动,如冷原子、离子或芯片,因为其波长与相关系统的波长不一样。"我们小组在以前的工作中表明,原子本身可以被用作媒介,而不是晶体。因此,我们制作了第一个基于铷原子的OPO,其中两个光束是强烈的量子相关的,并获得了一个可以与其他有可能作为量子存储器的系统互动的源,如冷原子,"Florez说。然而,这并不足以表明这些光束是纠缠在一起的。除了强度之外,与光波同步有关的光束相位也需要显示出量子关联性。他说:"这正是我们在《物理评论快报》报道的新研究中所实现的。我们重复了同样的实验,但增加了新的检测步骤,使我们能够测量所产生的场的振幅和相位中的量子相关性。结果,我们能够证明它们是纠缠在一起的。此外,该检测技术使我们能够观察到,纠缠结构比通常所描述的要丰富。我们实际上产生的是一个由四个纠缠谱带组成的系统,而不是两个相邻的谱带被纠缠在一起。""在这种情况下,波的振幅和相位是纠缠在一起的。这在许多处理和传输量子编码信息的协议中是基本的。除了这些可能的应用,这种光源还可以用于计量学。强度的量子关联导致强度波动的大大减少,这可以提高光学传感器的灵敏度。想象一下,在一个聚会上,每个人都在说话,你听不到房间另一边的人说话。如果噪音充分降低,如果每个人都停止说话,你就可以在很远的地方听到某人说的话。"他补充说,提高用于测量人脑发出的α波的原子磁力计的灵敏度是潜在的应用之一。"文章还指出,与晶体OPO相比,铷质OPO还有一个优势。"Florez说:"晶体OPO必须要有镜,使光在腔内保持更长的时间,这样相互作用就会产生量子相关的光束,而使用原子介质,在其中产生的两个光束比晶体更有效,避免了需要镜子来禁锢光这么长的时间。"在他的小组进行这项研究之前,其他小组曾试图用原子制造OPO,但未能证明所产生的光束的量子相关性。新的实验表明,系统中没有内在的限制来阻止这种情况的发生。研究人员发现,原子的温度是观察量子关联的关键。显然,其他研究使用了更高的温度,这让他们无法观察到相关关系。...PC版:https://www.cnbeta.com.tw/articles/soft/1337695.htm手机版:https://m.cnbeta.com.tw/view/1337695.htm

相关推荐

封面图片

MPQ团队利用单个铷原子产生了数量破纪录的量子纠缠光子簇

MPQ团队利用单个铷原子产生了数量破纪录的量子纠缠光子簇在2022年8月24日发表于《自然》杂志上的一篇文章中,来自马克斯·普朗克量子光学研究所(MPQ)的一支团队,详细介绍了一种高效驱动光量子纠缠的新方法。虽然听起来有些违反直觉,但数十年来的量子实验已经充分证明——无论相距多远,改变其中一个结对粒子的状态、就会同步改变另一粒子的状态。一个铷原子被困在一个由两个高反射镜组成的光学谐振器中(渲染图,来自:MPQ)受量子纠缠现象的启发,近年来已有大量团队投入新兴商业技术的开发。真空状态下的光学谐振器,单个铷原子被困于支架内的锥形镜之间。以量子计算器为例,其中纠缠的例子,就可用于存储和存储信息的量子比特。研究配图1-实验设置/协议概述为实现最佳效果,量子计算机需要用到能够产生大量粒子、并将之纠缠到一起的装置,但这显然并非易事。研究配图2-GHz状态好消息是,MPQ研究人员找到了一种更可靠的量子纠缠方法,并成功地将14个光子纠缠到了一起——这也是迄今为止规模最喜人的“光子簇”。研究配图3-集簇状态具体说来是,研究团队从单独的铷原子开始上手,将它困在一个以特定模式反射电磁波的光学腔中。当被特定频率的激光击中时,原子就被赋予了准备就绪的给定特定。研究配图4-测得N光子重合率接着研究人员向它发射另一调制脉冲,以使原子发射一个与它纠缠的光子。通过重复该过程,原子便可在每个光子发射之间旋转,直到产生一整条相互纠缠的“光子链”。扩展数据图1-详细的实验序列更棒的是,该过程较现有技术的效率更加出众——产生光子的时间占比超过43%,近乎每两次光脉冲就能产生一个光子。扩展数据图2-奇偶性振荡尽管对于长期关注量子纪录的朋友们来说,14个纠缠量子可能听起来不算多——毕竟此前科学家已设法通过气体实验、实现了数万亿个原子的纠缠——但此类系统并不适用于量子计算机或量子通信。扩展数据图3-发射器的相干特性相比之下,通过常规技术手段产生的光子,其量子应用也要简单得多。更何况这项新技术颇具效率优势,意味着后续能够轻松扩展光子的产量。下一步,MPQ团队计划开展至少利用两个原子的新实验。扩展数据图4-vSTIRAP过程引发的失真最后,有关这项研究的详情,已发表于近日出版的《Nature》期刊上,原标题为《Efficientgenerationofentangledmultiphotongraphstatesfromasingleatom》。PC版:https://www.cnbeta.com/articles/soft/1309989.htm手机版:https://m.cnbeta.com/view/1309989.htm

封面图片

科学家开发出能产生量子纠缠光子网的超薄超表面

科学家开发出能产生量子纠缠光子网的超薄超表面桑迪亚国家实验室和马克斯-普朗克研究所的科学家们已经开发出一种方法,它可以使用比平时简单得多的设置来生产量子纠缠光子网。其关键则是一个厚度只有纸的1/100的精确图案表面,它可以取代一屋子的光学设备。PC版:https://www.cnbeta.com/articles/soft/1316551.htm手机版:https://m.cnbeta.com/view/1316551.htm

封面图片

研究人员制造出寿命比以前长数百万倍的时间晶体

研究人员制造出寿命比以前长数百万倍的时间晶体研究人员成功延长了时间晶体的寿命,证实了弗兰克-威尔切克(FrankWilczek)提出的一个理论概念。这标志着量子物理学向前迈出了重要一步。多特蒙德工业大学的一个研究小组最近成功地制造出了一种非常耐用的时间晶体,它的寿命比以前的实验所显示的要长几百万倍。通过这一研究,他们证实了诺贝尔奖获得者弗兰克-威尔切克(FrankWilczek)大约在十年前提出的一个极其有趣的现象,而这一现象已经出现在科幻电影中。这项研究成果现已发表在《自然-物理》杂志上。空间晶体,是原子在大长度尺度上的周期性排列。这种排列赋予了晶体迷人的外观,就像宝石一样具有光滑的切面。物理学通常把空间和时间放在同一层面上处理,例如在狭义相对论中,麻省理工学院(MIT)物理学家、诺贝尔物理学奖获得者弗兰克-威尔切克(FrankWilczek)在2012年提出了一个假设:除了空间中的晶体,时间中也一定存在晶体。他说,要做到这一点,它们的一个物理特性必须在时间上自发地开始发生周期性变化,即使系统没有经历相应的周期性干扰。看似火焰的是对新时间晶体的测量:每个点都对应一个实验值,从而得出时间晶体核自旋极化周期性动态的不同视图。图片来源:AlexGreilich/多特蒙德大学这种时间晶体是否可能存在,几年来一直是科学界争论不休的话题,但很快就出现在电影院里:例如,在漫威影业出品的电影《复仇者联盟:终局之战》(2019)中,时间晶体就扮演了核心角色。从2017年起,科学家们开始在少数场合成功展示了潜在的时间晶体。AlexGreilich博士在多特蒙德工业大学物理系凝聚态物质研究中心工作。资料来源:多特蒙德工业大学然而,与威尔切克最初的想法不同的是,这些系统受到具有特定周期性的时间激发,但随后又以两倍长的周期发生反应。2022年,在玻色-爱因斯坦凝聚态中才展示了一种晶体,虽然激发与时间无关,即恒定不变,但它在时间上表现出周期性。不过,这种晶体的寿命只有几毫秒。亚历克斯-格雷利希博士领导的多特蒙德工业大学物理学家现已设计出一种由砷化镓铟制成的特殊晶体,在这种晶体中,核自旋充当了时间晶体的储存器。晶体在持续光照下,通过与电子自旋的相互作用形成核自旋极化。正是这种核自旋极化自发地产生了振荡,相当于时间晶体。目前的实验结果表明,这种晶体的寿命至少为40分钟,比迄今为止证明的寿命长1000万倍,而且有可能存活得更长。通过系统地改变实验条件,可以在很大范围内改变晶体的周期。然而,也有可能进入晶体"熔化"的区域,即失去周期性的区域。这些区域也很有趣,因为这时会表现出混沌行为,这种行为可以维持很长时间。这是科学家们第一次能够利用理论工具来分析这类系统的混沌行为。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1416277.htm手机版:https://m.cnbeta.com.tw/view/1416277.htm

封面图片

纠缠增强传感技术为先进量子传感器的研发和进步打下了基础

纠缠增强传感技术为先进量子传感器的研发和进步打下了基础因斯布鲁克物理学家将链中的所有粒子相互纠缠,产生了所谓的挤压量子态。资料来源:StevenBurrows和雷伊小组/JILA现在,由克里斯蒂安-罗斯(ChristianRoos)领导的因斯布鲁克大学和奥地利科学院量子光学与量子信息研究所(IQOQI)的科学家们展示了如何利用产生纠缠的特殊方法来进一步提高光学原子钟功能不可或缺的测量精度。"量子系统的观测总是受到一定统计不确定性的影响。"ChristianRoos团队的JohannesFranke解释说:"这是量子世界的本质决定的。"纠缠可以帮助我们减少这些误差"。在美国博尔德JILA理论家安娜-玛丽亚-雷伊的支持下,因斯布鲁克的物理学家们在实验室里对纠缠粒子集合的测量精度进行了测试。研究人员使用激光来调节排列在真空室中的离子之间的相互作用,并将它们纠缠在一起。"相邻粒子之间的相互作用会随着粒子间距离的增加而减弱。因此,我们利用自旋交换相互作用,让系统表现得更有集体性,"因斯布鲁克大学理论物理系的拉斐尔-考布吕格尔解释说。因此,链中的所有粒子都相互纠缠,产生了所谓的挤压量子态。物理学家以此证明,通过将51个离子与单个粒子纠缠在一起,测量误差大约可以减半。在此之前,纠缠增强传感主要依赖于无限的相互作用,这就限制了它只适用于某些量子平台。"因斯布鲁克量子物理学家通过实验证明,量子纠缠使传感器更加灵敏。"克里斯蒂安-罗斯说:"我们在实验中使用了一种光学转变,原子钟也采用了这种转变。这项技术可以改善目前使用原子钟的领域,如卫星导航或数据传输。此外,这些先进的时钟还能为寻找暗物质或确定基本常数的时间变化等研究提供新的可能性。"克里斯蒂安-罗斯和他的团队现在希望在二维离子群中测试这种新方法。目前的研究成果发表在《自然》(Nature)杂志上。在同一期杂志上,研究人员利用中性原子发表了非常相似的结果。在因斯布鲁克进行的研究得到了奥地利科学基金FWF和奥地利蒂罗尔工业联合会等机构的资助。...PC版:https://www.cnbeta.com.tw/articles/soft/1380631.htm手机版:https://m.cnbeta.com.tw/view/1380631.htm

封面图片

研究人员成功制造出金烯(goldene):只有原子厚的金薄片

研究人员成功制造出金烯(goldene):只有原子厚的金薄片进一步的实验很快赋予了这种材料更惊人的特性,它开始出现在电子产品、太阳能电池板、显示器、服装、头盔、防弹装甲、飞机甚至鞋子中。但最终,这种性能卓越的材料在新闻和市场上达到了过度饱和的地步--我们厌倦了写它,你厌倦了读它。即使是现在它也占据了这篇报道的太多篇幅。值得庆幸的是,有一种新的神奇材料可能会抢走石墨烯的风头。瑞典林雪平大学(LinköpingUniversity)的研究人员成功地制造出了金烯(goldene)--一种只有一个原子厚的金薄片。与石墨烯一样,这也改变了这种材料的三维块状特性--在这种情况下,烯金变成了一种半导体,而普通的金则不再是最好的导体之一。研究人员说,金烯之所以具有新的特性,是因为在其二维形式中,原子获得了两个"自由键"。这意味着它最终可以用作转化二氧化碳、生产氢气或有价值化学品或净化水的催化剂。当然,电子产品也能从中受益,即使这只是意味着制造电子产品所需的金量减少了。不过,金烯并不像石墨烯那样容易获得。金原子容易聚集在一起,因此很难将它们平铺成二维薄片。林雪平大学的科学家们首先在钛层和碳化物层之间夹上一层薄薄的硅,然后在上面镀上一层金。当加热到高温时,薄硅层被金取代。然后,棘手的一步就是将金烯从夹层中取出。为此,研究人员测试了一种名为"村上试剂"的化学试剂,它是日本古老铁匠技术的一部分,可以蚀刻掉碳残留物。在低浓度下使用长达两个月后,金烯就会暴露出来。最后,用表面活性剂使其稳定。当然,这只是金烯的一个开端,研究人员表示,他们计划继续研究金烯的特性、潜在应用,以及其他贵金属是否也能以类似的方式扁平化为二维。这项研究发表在《自然-合成》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1427612.htm手机版:https://m.cnbeta.com.tw/view/1427612.htm

封面图片

利用多部分混合纠缠技术解决量子传送中的噪声问题

利用多部分混合纠缠技术解决量子传送中的噪声问题一种创新的量子传送方法,它通过多部分混合纠缠来抵抗量子系统因环境干扰而产生的退相干效应。通过全光学的实验设置,研究团队证实了这种方法在控制退相干中的有效性,使得量子信息即使在极端条件下也能高效传送。该研究不仅成功地展示了高保真度的量子传送,还为未来量子通信技术的发展打开了新的可能。退相干是量子系统因与周围环境相互作用而失去量子态相干性的过程。关注频道@ZaiHuaTG频道投稿@ZaiHuabot

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人