科学家展示可按需生物降解和可回收的印刷电路

科学家展示可按需生物降解和可回收的印刷电路据NewAtlas报道,旧的电子产品很难回收,这意味着它们堵塞了垃圾填埋场,同时也锁住了有价值的金属。现在,科学家们已经展示了可按需降解的印刷电路,使其材料恢复到可再利用的形式。当我们中的许多人每隔一两年就追寻新手机的兴奋时,电子产品的浪费问题只会越来越多。许多这些设备在建造时并没有考虑到可回收性,而且很难从中提取金和银等贵金属进行再利用。相反,这些电子垃圾的大部分最终被填埋,在那里它们会向环境中浸出有毒的化学物质。一个不断增长的研究领域是所谓的瞬态电子产品--那些在一定时间后或遇到特定触发因素(如热或水)时自然溶解的电子产品。这些不仅可以帮助减少电子垃圾,而且可以使人体或环境中的传感器在完成工作后进行生物降解。在这项新的研究中,伯克利实验室和加州大学伯克利分校的研究人员已经开发并演示了印刷电路,它可以根据需要分解成可重复使用的材料,包括贵金属。新的设计建立在该团队以前的工作基础上,他们创造了嵌入酶的可生物降解塑料,这些酶将在热水或土壤中分解材料的聚合物链,在几天内降解塑料。一种名为RHP的分子将酶分散到塑料内的团块中,这使它们不会过早地破坏材料。这一次,研究人员调整了配方,使用廉价的酶的“鸡尾酒”,以简化生产和降低成本。他们用可生物降解的塑料作为基材,并在其上印制了由导电油墨制成的电子电路。这是由银片或碳黑颗粒组成的,以提供导电性,聚酯粘合剂将其全部固定在一起,而酶“鸡尾酒”通过降解粘合剂最终将整个东西解开。该小组测试了电路的整个拟议生命周期。首先,他们在正常条件下将它们存放在抽屉里七个月,暴露在温度和湿度的日常波动中。然后,他们在一个月内连续对它们进行了电流测试。研究小组说,储存的电路与全新的电路一样好用,表明它们没有开始过早地退化。最后,研究人员测试了它们的生物可降解性。他们让它们在温水中放置几天,发现在72小时内,银粒子与聚合物分离,聚合物已经分解成单体。该团队说,94%的银可以被回收,单体也可以被回收。该团队还在一系列其他材料上测试了可生物降解的导电墨水,如柔性塑料和布,并发现它在所有情况下仍可作为电路使用。这可能使它对可穿戴设备很有用。该团队说,下一步是创建一个可生物降解的整个微芯片。这项研究发表在《先进材料》杂志上。该团队在下面的视频中描述了这项工作。PC版:https://www.cnbeta.com/articles/soft/1310431.htm手机版:https://m.cnbeta.com/view/1310431.htm

相关推荐

封面图片

科学家发明一种强度更高、可回收的塑料

科学家发明一种强度更高、可回收的塑料新的可生物降解聚酯由于其出色的化学和生物降解能力以及令人印象深刻的机械性能,有可能被用作一种可持续的、环境友好的热塑性材料,可以很容易地被回收。常见的高密度聚乙烯(HDPE)是一种特别坚固和耐用的材料。它的热塑性能归功于其分子链的内部结构,这些分子链以结晶方式排列,由于范德华力而产生了额外的吸引力。这些分子链也是纯碳氢化合物。结晶性和碳氢化合物含量的结合意味着有能力降解塑料的微生物无法进入分子链将其分解。德国康斯坦茨大学的StefanMecking及其同事的研究小组现在已经开发出一种聚酯,它的结晶度与高密度聚乙烯相似,而且还保留了其有益的机械性能。与聚乙烯不同,聚酯还含有理论上可以被化学或酶降解的功能团。然而,在正常情况下,聚酯的结晶度越高(即与高密度聚乙烯越相似),它就越不容易被生物降解。该团队对他们发明的结晶聚酯在接触到酶时的降解速度感到惊讶。Mecking解释说:"我们用自然环境中存在的酶测试了降解,它比我们的参考材料快一个数量级。不仅仅是酶溶液降解了该材料:土壤微生物也能够完全堆肥该聚酯。"但究竟是什么让这种聚酯纤维具有如此特殊的生物降解性呢?研究小组能够确定乙二醇的重大贡献,乙二醇是聚酯的组成成分之一。Mecking补充说。"这种构件实际上在聚酯中非常常见。它提供了高熔点,但它也增加了这些类似聚乙烯材料的降解性"。由于其良好的化学和生物降解性,再加上其机械性能,这种新的聚酯可以作为一种可回收的热塑性材料找到应用,对环境的影响最小。Mecking补充说,最终目标是进行闭环化学回收,将塑料分解成原材料并生产新塑料。该团队设计的这种塑料的额外好处是,如果有任何材料在这个闭环中进入环境,它们可以进行生物降解,不会留下持久的影响。...PC版:https://www.cnbeta.com.tw/articles/soft/1345227.htm手机版:https://m.cnbeta.com.tw/view/1345227.htm

封面图片

灵芝衍生的电子产品被设计成在丢弃时可进行生物降解

灵芝衍生的电子产品被设计成在丢弃时可进行生物降解在调查蘑菇在建筑保温等方面的应用时,他们注意到灵芝有一个特别坚韧的外皮,可以保护下面的浆状组织不受病原体和其他类型真菌的侵害。研究发现,外皮可以很容易地被去除,然后进行干燥,形成一种"坚固、灵活和耐热"的材料,可以承受高达250ºC(482ºF)的温度。也就是说,当放在适当的环境中,它可以完全被生物降解。考虑到这些特性,人们希望"MycelioTronic"材料有朝一日可以作为柔性电子设备中印刷电路板的基材。目前,这类电路板中的基材是由聚合物构成的,很难与其他部件分离,因此,聚合物和这些部件都很难回收。相比之下,一旦以蘑菇为基础的基质发生生物降解,剩下的不可降解的物品就可以简单地被拔出并回收利用。可以想象,这种材料也可以在医疗植入物中找到用途,一旦不再需要,就可以在体内无害地溶解。在一次概念验证活动中,研究人员已经建立了功能性的接近和湿度传感器,其中传统的电子芯片被焊接在MycelioTronic基板上。他们现在正在研究将这种材料用于其他部件,目的是最终生产出一种完全可生物降解的线路板。这项研究在最近发表于《科学进展》杂志的一篇论文中进行了描述。...PC版:https://www.cnbeta.com.tw/articles/soft/1332807.htm手机版:https://m.cnbeta.com.tw/view/1332807.htm

封面图片

科学家通过人工光合作用利用阳光制造出可生物降解的塑料

科学家通过人工光合作用利用阳光制造出可生物降解的塑料利用太阳光为光氧化系统提供动力,丙酮酸和CO¬2被苹果酸脱氢酶和富马酸酶转化为富马酸由人工光合作用研究中心的YutakaAmao教授和大阪市立大学研究生院的研究生MikaTakeuchi领导的研究小组,已经成功地从二氧化碳中合成富马酸,这是一种塑料原料,这也是首次由阳光驱动来生成的材料。他们的研究结果发表在《可持续能源与燃料》上。富马酸通常是从石油中合成的,用作制造可生物降解塑料(如聚丁二酸)的原料,但这一发现表明,富马酸可以利用可再生的太阳能从二氧化碳和生物质衍生化合物中合成。"为了实现人工光合作用的实际应用,这项研究成功地使用了可见光-可再生能源-作为动力源,"Amao教授解释说。"在未来,我们的目标是收集气态二氧化碳,并通过人工光合作用直接合成富马酸"。...PC版:https://www.cnbeta.com.tw/articles/soft/1343733.htm手机版:https://m.cnbeta.com.tw/view/1343733.htm

封面图片

科学家将苍蝇变为可生物降解的塑料

科学家将苍蝇变为可生物降解的塑料研究人员在美国化学学会(ACS)秋季会议上展示了他们的研究成果。美国化学学会2023年秋季会议是一个混合会议,将于8月13-17日以虚拟和现场方式举行,大约有12000个关于各种科学主题的报告。"20年来,我的研究小组一直在开发将天然产品(例如从甘蔗或树木中获取的葡萄糖)转化为可降解、可消化且不会在环境中持久存在的聚合物的方法,"该项目的首席研究员KarenWooley博士说。"但是,这些天然产品是从同时用于食品、燃料、建筑和运输的资源中提取的。"于是,Wooley开始寻找没有这些竞争性用途的替代资源。她的同事杰弗里-汤姆柏林(JefferyTomberlin)博士建议她可以使用养殖黑兵蝇留下的废品,这是他一直在帮助发展的一个不断扩大的产业。这种苍蝇的幼虫含有多种蛋白质和其他营养成分,因此越来越多的人开始饲养这种未成熟的昆虫,作为动物饲料和消耗废物。然而,成虫在繁殖期结束后寿命很短,随后就会被丢弃。在汤姆柏林的建议下,这些成虫的尸体成了伍利团队新的起始材料。德克萨斯农工大学伍利实验室的研究生卡西迪-蒂贝茨(CassidyTibbetts)说:"我们正在把一些垃圾变成有用的东西。"当蒂贝茨检查死苍蝇时,她确定甲壳素是其中的主要成分。这种无毒、可生物降解的糖基聚合物可以强化昆虫和甲壳类动物的外壳或外骨骼。制造商已经从虾壳和蟹壳中提取甲壳素用于各种用途,Tibbetts一直在使用乙醇漂洗、酸性脱盐、碱性脱蛋白和漂白脱色等类似技术,从昆虫尸体中提取和提纯甲壳素。她说,她从苍蝇身上获取的甲壳素粉可能更纯净,因为它没有传统产品的淡黄色和结块质地。她还指出,从苍蝇身上获取甲壳素可以避免对某些海鲜过敏的担忧。其他一些研究人员从苍蝇幼虫中分离出几丁质或蛋白质,但Wooley说,据她所知,她的团队是第一个使用废弃成蝇中的几丁质的团队。在蒂贝茨继续改进提取技术的同时,伍利实验室的另一名研究生郭宏明一直在将纯化的苍蝇甲壳素转化为一种类似的聚合物,即壳聚糖。他的方法是剥离甲壳素的乙酰基。这就暴露出了具有化学反应活性的氨基,这些氨基可以被官能化,然后交联。这些步骤将壳聚糖转化为有用的生物塑料,如超吸水性水凝胶,这是一种能吸水的三维聚合物网络。这种水凝胶能在一分钟内吸收47倍于其重量的水。Wooley说,这种产品有可能用于农田土壤,以吸收洪水,然后在随后的干旱期间缓慢释放水分。她解释说:"在得克萨斯州,我们经常不是遭遇洪水就是遭遇干旱,所以我一直在想如何制造一种超吸水性水凝胶来解决这个问题。她说,由于这种水凝胶是可生物降解的,它应该会逐渐释放出其分子成分,作为农作物的养分。"今年夏天,研究小组将启动一个项目,将甲壳素分解成单体葡糖胺。然后,这些小糖分子将被用来制造生物塑料,如聚碳酸酯或聚氨酯,这些塑料传统上是用石油化工产品制造的。黑兵蝇还含有许多其他有用的化合物,该研究小组计划将其用作起始材料,包括蛋白质、DNA、脂肪酸、脂类和维生素。用这些化学构件制成的产品在丢弃时可以降解或消化,因此不会造成目前的塑料污染问题。Wooley对这一过程的愿景是使其符合可持续发展的循环经济理念。她说:"最终,我们希望昆虫以废塑料为食物来源,然后我们再收获它们,收集它们的成分来制造新的塑料。因此,昆虫不仅是塑料的来源,而且还会食用废弃塑料"。...PC版:https://www.cnbeta.com.tw/articles/soft/1377473.htm手机版:https://m.cnbeta.com.tw/view/1377473.htm

封面图片

化学"断裂点"让新型塑料在几天到两个月内完成生物降解

化学"断裂点"让新型塑料在几天到两个月内完成生物降解因此,大量的研究集中在设计新型的塑料,使其在完成工作后能更快地进行生物降解,这并不奇怪。而现在,康斯坦茨大学的一个团队已经创造了一个有希望的新候选材料。现在,康斯坦茨大学的化学家们已经开发出一种新的塑料,它具有普通塑料的所有耐久性,但在几个月甚至几天内就能生物降解。这种新材料被称为聚酯-2,18,以其组成的两个模块命名--一个含有两个碳原子的短二元醇单元和一个含有18个碳原子的二元羧酸。虽然它保持了密集的结晶结构,使普通塑料(如HDPE)具有耐用性,但该团队插入了化学"断点",使该材料能够解开其基本模块,从而可以被回收和重新使用,更重要的是,该团队说这种材料的基础部分可以从可再生资源中获得。在实验室测试中,这种聚酯在几天内就完全分解了。在一个标准的工业堆肥厂进行的进一步测试,使用其他微生物,花了大约两个月,这是令人印象深刻的速度。这些实验表明,不仅这种材料可以被有意地分解,而且如果它中的一些进入了土壤或海洋,它所造成的问题也会少很多。该研究的通讯作者StefanMecking说:"我们也对这种快速降解感到惊讶。当然,我们不能将堆肥厂的结果一对一地转移到任何可以想象的环境条件。但它们确实证实了这种材料确实是可生物降解的,并表明如果它无意中被释放到环境中,它的持久性要比高密度聚乙烯等塑料小得多"。该团队计划继续研究这种新聚酯的可回收性和生物降解性,以及如何将其用于3D打印和包装材料。该研究发表在《AngewandteChemie》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1335853.htm手机版:https://m.cnbeta.com.tw/view/1335853.htm

封面图片

英飞凌将提供可溶于水的可回收电路板

英飞凌将提供可溶于水的可回收电路板英国初创公司JivaMaterials开发的可降解电路板基板材料Soluboard将被应用于英飞凌(Infineon)的演示电路板中。Soluboard使用天然纤维制成的可回收和可降解电路板基板材料,具有比通常用于PCB的玻璃纤维增强环氧树脂层压板低得多的碳足迹。Soluboard是由一种植物基材料制成的,这种材料被包裹在一个无毒聚合物中,在热水中浸泡时,聚合物会溶解,只留下可堆肥的有机物质。据称,焊接在板上的电子元件可以被回收和再利用。虽然Soluboard的制造成本可能比较高,而且目前只能用于制造单层或双层的印刷电路板,但英飞凌表示正在考虑在未来所有的电路板产品中使用这种技术,以使电子行业更加可持续。相关:;来源:投稿:@ZaiHuaBot频道:@TestFlightCN

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人