灵芝衍生的电子产品被设计成在丢弃时可进行生物降解

灵芝衍生的电子产品被设计成在丢弃时可进行生物降解在调查蘑菇在建筑保温等方面的应用时,他们注意到灵芝有一个特别坚韧的外皮,可以保护下面的浆状组织不受病原体和其他类型真菌的侵害。研究发现,外皮可以很容易地被去除,然后进行干燥,形成一种"坚固、灵活和耐热"的材料,可以承受高达250ºC(482ºF)的温度。也就是说,当放在适当的环境中,它可以完全被生物降解。考虑到这些特性,人们希望"MycelioTronic"材料有朝一日可以作为柔性电子设备中印刷电路板的基材。目前,这类电路板中的基材是由聚合物构成的,很难与其他部件分离,因此,聚合物和这些部件都很难回收。相比之下,一旦以蘑菇为基础的基质发生生物降解,剩下的不可降解的物品就可以简单地被拔出并回收利用。可以想象,这种材料也可以在医疗植入物中找到用途,一旦不再需要,就可以在体内无害地溶解。在一次概念验证活动中,研究人员已经建立了功能性的接近和湿度传感器,其中传统的电子芯片被焊接在MycelioTronic基板上。他们现在正在研究将这种材料用于其他部件,目的是最终生产出一种完全可生物降解的线路板。这项研究在最近发表于《科学进展》杂志的一篇论文中进行了描述。...PC版:https://www.cnbeta.com.tw/articles/soft/1332807.htm手机版:https://m.cnbeta.com.tw/view/1332807.htm

相关推荐

封面图片

科学家展示可按需生物降解和可回收的印刷电路

科学家展示可按需生物降解和可回收的印刷电路据NewAtlas报道,旧的电子产品很难回收,这意味着它们堵塞了垃圾填埋场,同时也锁住了有价值的金属。现在,科学家们已经展示了可按需降解的印刷电路,使其材料恢复到可再利用的形式。当我们中的许多人每隔一两年就追寻新手机的兴奋时,电子产品的浪费问题只会越来越多。许多这些设备在建造时并没有考虑到可回收性,而且很难从中提取金和银等贵金属进行再利用。相反,这些电子垃圾的大部分最终被填埋,在那里它们会向环境中浸出有毒的化学物质。一个不断增长的研究领域是所谓的瞬态电子产品--那些在一定时间后或遇到特定触发因素(如热或水)时自然溶解的电子产品。这些不仅可以帮助减少电子垃圾,而且可以使人体或环境中的传感器在完成工作后进行生物降解。在这项新的研究中,伯克利实验室和加州大学伯克利分校的研究人员已经开发并演示了印刷电路,它可以根据需要分解成可重复使用的材料,包括贵金属。新的设计建立在该团队以前的工作基础上,他们创造了嵌入酶的可生物降解塑料,这些酶将在热水或土壤中分解材料的聚合物链,在几天内降解塑料。一种名为RHP的分子将酶分散到塑料内的团块中,这使它们不会过早地破坏材料。这一次,研究人员调整了配方,使用廉价的酶的“鸡尾酒”,以简化生产和降低成本。他们用可生物降解的塑料作为基材,并在其上印制了由导电油墨制成的电子电路。这是由银片或碳黑颗粒组成的,以提供导电性,聚酯粘合剂将其全部固定在一起,而酶“鸡尾酒”通过降解粘合剂最终将整个东西解开。该小组测试了电路的整个拟议生命周期。首先,他们在正常条件下将它们存放在抽屉里七个月,暴露在温度和湿度的日常波动中。然后,他们在一个月内连续对它们进行了电流测试。研究小组说,储存的电路与全新的电路一样好用,表明它们没有开始过早地退化。最后,研究人员测试了它们的生物可降解性。他们让它们在温水中放置几天,发现在72小时内,银粒子与聚合物分离,聚合物已经分解成单体。该团队说,94%的银可以被回收,单体也可以被回收。该团队还在一系列其他材料上测试了可生物降解的导电墨水,如柔性塑料和布,并发现它在所有情况下仍可作为电路使用。这可能使它对可穿戴设备很有用。该团队说,下一步是创建一个可生物降解的整个微芯片。这项研究发表在《先进材料》杂志上。该团队在下面的视频中描述了这项工作。PC版:https://www.cnbeta.com/articles/soft/1310431.htm手机版:https://m.cnbeta.com/view/1310431.htm

封面图片

航天热媒炉在新疆大型生物降解树脂项目成功运行

航天热媒炉在新疆大型生物降解树脂项目成功运行中国航天科技集团消息,近日,中国航天科技集团有限公司六院北京11所研制的热媒炉在新疆一公司24万吨聚酯类生物降解树脂项目成功运行。该项目是新疆维吾尔自治区重大建设项目,也是昌吉国家高新区迄今为止投资额度、建设规模最大的项目,主要产品包括多种全生物降解树脂,市场前景良好。该所热媒炉在该项目的成功运行,进一步提高了其在生物降解树脂领域以及新疆维吾尔自治区的市场竞争优势。

封面图片

实验中的可生物降解玻璃在堆肥时可分解

实验中的可生物降解玻璃在堆肥时可分解生产过程开始时,在惰性气体环境中加热氨基酸或肽粉,超过其熔点,但不完全达到其分子分解温度。然后对熔化的材料进行过冷处理,使其冷却到低于其通常的冻结温度,而不至于冻结成固体。最后,材料被水浇灭,使其迅速转变为透明的固体状态,而不发生结晶。一份概述生产过程和玻璃质量的图示在实验室测试中,这种玻璃被发现表现出"出色的光学特性、良好的机械性能和灵活的可加工性",后者指的是它可以很容易地被铸入商业模具或进行3D打印。重要的是,当玻璃碎片被堆肥时,土壤中的微生物在三周至7.5个月内将其分解,这取决于所使用的特定氨基酸或肽。小鼠研究还表明,这种玻璃在体内无害地进行生物降解,这表明它可以被用于药物分配植入物等应用,这些植入物在完成工作后不必被移除。首席科学家闫学海教授说:"生物分子玻璃的概念,超越了商业使用的玻璃或塑料,可能是一个可持续发展的绿色生活技术的基础。然而,生物分子玻璃目前还处于实验室阶段,离大规模商业化还很远。"有关这项研究的论文最近发表在《科学进展》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1350379.htm手机版:https://m.cnbeta.com.tw/view/1350379.htm

封面图片

化学"断裂点"让新型塑料在几天到两个月内完成生物降解

化学"断裂点"让新型塑料在几天到两个月内完成生物降解因此,大量的研究集中在设计新型的塑料,使其在完成工作后能更快地进行生物降解,这并不奇怪。而现在,康斯坦茨大学的一个团队已经创造了一个有希望的新候选材料。现在,康斯坦茨大学的化学家们已经开发出一种新的塑料,它具有普通塑料的所有耐久性,但在几个月甚至几天内就能生物降解。这种新材料被称为聚酯-2,18,以其组成的两个模块命名--一个含有两个碳原子的短二元醇单元和一个含有18个碳原子的二元羧酸。虽然它保持了密集的结晶结构,使普通塑料(如HDPE)具有耐用性,但该团队插入了化学"断点",使该材料能够解开其基本模块,从而可以被回收和重新使用,更重要的是,该团队说这种材料的基础部分可以从可再生资源中获得。在实验室测试中,这种聚酯在几天内就完全分解了。在一个标准的工业堆肥厂进行的进一步测试,使用其他微生物,花了大约两个月,这是令人印象深刻的速度。这些实验表明,不仅这种材料可以被有意地分解,而且如果它中的一些进入了土壤或海洋,它所造成的问题也会少很多。该研究的通讯作者StefanMecking说:"我们也对这种快速降解感到惊讶。当然,我们不能将堆肥厂的结果一对一地转移到任何可以想象的环境条件。但它们确实证实了这种材料确实是可生物降解的,并表明如果它无意中被释放到环境中,它的持久性要比高密度聚乙烯等塑料小得多"。该团队计划继续研究这种新聚酯的可回收性和生物降解性,以及如何将其用于3D打印和包装材料。该研究发表在《AngewandteChemie》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1335853.htm手机版:https://m.cnbeta.com.tw/view/1335853.htm

封面图片

研究人员开发出可修复婴儿先天性心脏缺陷的生物降解贴片

研究人员开发出可修复婴儿先天性心脏缺陷的生物降解贴片其中一些手术需要植入心脏补片,目前心脏补片由非生命、不可降解的材料制成,不会随患者的心脏一起生长,并且由于无法与心脏组织整合而容易失败。为了解决这些问题,科罗拉多大学(CU)安舒茨医学校区的研究人员开发了一种由患者自身细胞制成的可生物降解贴片,旨在纠正冠心病、限制侵入性手术,并比现有贴片更耐用。该研究的通讯作者JeffreyJacot表示:“最终目标是利用患者自身的细胞制造实验室培养的心脏组织,可用于重组心脏以纠正心脏缺陷。任何在降解之前没有被健康组织取代的补片都将不可避免地失效并导致长期并发症。”心肌组织工程化提出了一些独特的挑战。首先,心脏结构不对称,再生能力有限,代谢需求巨大。其次,用于修复全层心脏缺陷的支架必须能够应对恶劣的机械环境的挑战,包括高压、周期性应变和与血液的直接接触。第三,组织工程补片必须从植入那一刻起就发挥作用。考虑到这些挑战,研究人员使用静电纺丝技术——通过在液体溶液中通电来制造纳米纤维,用可生物降解的聚己内酯(PCL)制造厚的多孔支架,并在其中填充纤维蛋白原(纤维蛋白是一种主要的蛋白质,也是血栓的成分)。然后在支架上接种人类诱导多能干细胞(iPSC),三周后,研究人员观察到其已生长到超过支架的一半。,此外,支架支持自发收缩iPSC衍生的心肌细胞也能促进组织增厚。贾科特说:“支架的机械性能足以修复心壁。在静态培养中,血管细胞能够在三周内渗透到支架的一半以上。”虽然该贴片在人体试验之前还需要进一步测试,但研究人员乐观地认为,它对于开发治疗先心病和其他心脏病的新疗法至关重要。这是专门用于心脏组织工程的非常厚的多孔静电纺丝贴片的首次成功演示。该研究发表在《今日材料》杂志上。JeffreyJacot博士在他的实验室里...PC版:https://www.cnbeta.com.tw/articles/soft/1400529.htm手机版:https://m.cnbeta.com.tw/view/1400529.htm

封面图片

科学家用废木头制成不易用烂又容易生物降解的饮环保吸管

科学家用废木头制成不易用烂又容易生物降解的饮环保吸管虽然我们已经看到了其他实验性的环保吸管,但有些(如那些由纸制成的)在潮湿时就会分解,而其他(如那些由甘蔗制成的)则需要复杂的生产过程。非一次性的多用吸管当然是一种选择,尽管不是每个人在外出时都会随时带着这样的吸管。考虑到这些限制,韩国仁荷大学的科学家们将目光投向了木质素,这是一种有机聚合物,构成了包括树木在内的植物的大部分支撑组织。它也是纸浆和造纸业的副产品,以前曾被提出用于更便宜的电池、废弃的碳纤维和更坚固的混凝土等应用。研究人员将木质素与马铃薯淀粉或植物衍生的聚乙烯醇(PVA)相结合,然后向该混合物中添加柠檬酸。然后他们将浆液铺成薄片,将该薄片卷成圆柱体并使其干燥,然后在真空中以180ºC(356ºF)的温度加热该圆柱体。一批木质素基吸管由此产生的生物塑料沿着缝隙自我密封,形成一个长长的、细细的管子,被切割成单独的柔性吸管。这些吸管在浸入液体时不会变湿,甚至比传统的聚丙烯吸管更坚固。传统吸管在被暴露在大自然中两个月后仍然没有变化,但木质素吸管已经明显地生物降解了。关于这项研究的论文由DickensAgumba、DucHoaPham和JaehwanKim领导撰写--最近发表在ACSOmega杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1348075.htm手机版:https://m.cnbeta.com.tw/view/1348075.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人