科学家通过外尔反铁磁体研究揭开了“霍尔效应”的物理学之谜

科学家通过外尔反铁磁体研究揭开了“霍尔效应”的物理学之谜在2022年8月18日发表于《自然·物理学》期刊上的一篇文章中,一支跨国研究团队详细介绍了在存储设备中使用“反铁磁”材料的最新进展。据悉,antiferromagnets特指具有“由电子自旋引起内部磁场、但又没有外部(远距)磁场”的一种特殊材料。得益于此,数据存储单元(比特位)有望在材料内部实现更致密的封装。研究配图1-Mn₃Sn反手性磁结构/磁化压电控制一方面,传统磁存储器中的铁磁体,需要避免相邻数据位(bit)的互相干扰,因而难以做到更加致密的封装。另一方面,若利用由EdwinHall在1879年发现的霍尔效应(HallEffect),则能够在反铁磁材料上施加垂直于电流方向的电压。研究配图2-拓补反磁体Mn₃Sn在面内单轴压缩下的压磁效应当反磁体中的所有自旋都翻转时,霍尔电压的符号也会随时改变——这样就可分别代表二进制比特位的“0”或“1”数值。尴尬的是,尽管科学家们早就知晓了铁磁材料中的霍尔效应,但直到最近,大家才认可了它在反铁磁体中的效应、且知之甚少。研究配图3-Weyl反铁磁体的AHE/在面内单轴应变下的符号反转好消息是,来自日本东京大学、美国康奈尔大学、约翰·霍普金斯大学、以及英国伯明翰大学的联合研究团队,刚刚对Weyl反铁磁体(Mn₃Sn)中的“霍尔效应”的最新解释。据悉,该材料具有特别强的自发霍尔效应。而近日发表于《自然·物理学》期刊上的新论文,不仅对铁磁体/反铁磁体研究领域产生了深远的影响、还引发了我们对下一代存储设备的新思考。研究配图4-ferrohalic、parahallic和diahallic状态下/霍尔矢量K的不同应变控制作为一种“外尔半金属”,Mn₃Sn并不是完美的反铁磁体,且它具有微弱的外部磁场。在此基础上,研究人员试图搞清霍尔效应是否由这种弱磁场引起。实验期间,科学家们使用了由研究合著者、来自伯明翰大学CliffordHicks博士设计的装置——该装置可用于向被测量材料提供可变的应力。扩展数据图-1:室温下反铁磁体中异常霍尔效应的压电转换通过将这种应力施加到外尔反铁磁体上,剩余的外部磁场就会有所增加。若霍尔效应由磁场驱动,那材料上的电压就会产生相应的影响。然而事实表明,电压并未发生实质性的变化,证明了磁场并未在其中扮演重要的角色。相反,研究得出了另一个结论,即材料内旋转电子的排列、才是产生霍尔效应的主因。CliffordHicks表示:“实验证明了霍尔效应是由传导电子与其自旋电子的量子相互作用引发,这一发现对于我们深入了解和改进磁存储技术都至关重要”。有关这项研究的详情,还请移步至《NaturePhysics》查看,原标题为《PiezomagneticswitchingoftheanomalousHalleffectinanantiferromagnetatroomtemperature》。PC版:https://www.cnbeta.com/articles/soft/1311965.htm手机版:https://m.cnbeta.com/view/1311965.htm

相关推荐

封面图片

中微子-光子相互作用:科学家揭开粒子物理学的神秘面纱

中微子-光子相互作用:科学家揭开粒子物理学的神秘面纱石川说:"我们的研究成果对于理解一些最基本的物质粒子的量子力学相互作用非常重要。它们还可能有助于揭示太阳和其他恒星中目前鲜为人知的现象的细节"。中微子是最神秘的基本物质粒子之一。由于中微子几乎不与其他粒子发生任何相互作用,因此极难对其进行研究。它们呈电中性,几乎没有质量。然而,它们的数量却非常丰富,大量的中微子不断从太阳中流出,穿过地球,甚至穿过我们自己,却几乎没有任何影响。了解更多有关中微子的信息,对于检验和完善我们目前对粒子物理学(即标准模型)的理解非常重要。日全食,日冕清晰可见。"在正常的'经典'条件下,中微子不会与光子发生相互作用,"石川解释说,"然而,我们已经揭示了中微子和光子如何能够在极大规模的均匀磁场中发生相互作用--大到103千米--这种磁场出现在恒星周围被称为等离子体的物质形态中。等离子体是一种电离气体,这意味着它的所有原子都获得了或多或少的电子,使它们成为带负电或正电的离子,而不是地球上日常条件下可能出现的中性原子。"弱电霍尔效应及其影响研究人员所描述的相互作用涉及到一种名为"电弱霍尔效应"的理论现象。这是电与磁在极端条件下的相互作用,自然界的两种基本力--电磁力和弱作用力--在此融合为弱电。这是一个理论概念,预计只适用于早期宇宙的极高能条件或粒子加速器的碰撞中。研究得出了这种意想不到的中微子-光子相互作用的数学描述,即拉格朗日。它描述了有关该系统能量状态的所有已知信息。石川健三,该研究的第一作者和通讯作者。图片来源:SohailKeeganPinto石川说:"除了有助于我们理解基础物理学之外,我们的研究还可能有助于解释日冕加热之谜。这是一个由来已久的谜团,它涉及太阳最外层大气--日冕--的温度远高于太阳表面温度的机制。我们的工作表明,中微子和光子之间的相互作用释放出能量,使日冕升温"。石川在总结发言中表达了他们团队的愿望:"我们现在希望继续我们的工作,寻找更深入的见解,特别是在这些极端条件下中微子和光子之间的能量转移"。...PC版:https://www.cnbeta.com.tw/articles/soft/1383901.htm手机版:https://m.cnbeta.com.tw/view/1383901.htm

封面图片

奇妙的波浪: 物理学家揭示了镍磁体中的自旋激子

奇妙的波浪:物理学家揭示了镍磁体中的自旋激子在《自然-通讯》杂志上发表的一项研究中,研究人员报告说在钼酸镍这种层状磁性晶体中发现了不寻常的特性。被称为电子的亚原子粒子类似于微小的磁铁,而且它们通常像罗盘针一样在磁场中定位。在实验中,中子从晶体内的磁性镍离子中散射出来,研究人员发现,每个镍离子的两个最外层电子表现得不同。这两个电子不是像罗盘针一样排列它们的自旋,而是在物理学家称之为自旋单子的现象中相互抵消。该研究的通讯作者、莱斯大学的戴鹏程说:"这样的物质根本就不应该是磁铁。而且,如果一个中子从一个特定的镍离子上散射下来,激发应该保持在局部,而不是在样品中传播。"戴鹏程是莱斯大学物理学和天文学教授。因此,当中子散射实验中的仪器检测到不是一个,而是两个系列的传播波时,戴鹏程和他的合作者感到惊讶,每个波的能量都有很大的不同。为了了解这些波的起源,有必要深入研究磁性晶体的原子细节。例如,来自晶体中原子的电磁力可以与磁场竞争,并影响邻近原子内的电子。这被称为晶体场效应,它可以迫使电子自旋沿着与磁场方向不同的方向定向。探测钼酸镍晶体的晶场效应需要额外的实验和对实验数据的理论解释。莱斯大学的合作者EmiliaMorosan说:"实验小组和理论之间的合作对于描绘一幅完整的画面和理解在这种化合物中观察到的不寻常的自旋激发是最重要的。"莫罗桑的研究小组利用比热测量探测了晶体对温度变化的热反应。从这些实验中,研究人员得出结论,在层状钼酸镍中出现了两种晶体场环境,而且这两种环境对镍离子的影响非常不同。研究报告的共同作者、帮助解释实验数据的莱斯大学理论物理学家AndriyNevidomskyy说:"在一种情况下,场效应相当弱,对应的热能约为10开尔文。在几开尔文的温度下,看到中子可以激发镍原子的磁自旋波,这也许并不令人惊讶,因为镍原子受到这种第一类晶体场的影响。但最令人费解的是看到它们来自受第二种类型影响的镍原子。那些原子周围有四面体排列的氧原子,电场效应几乎强了20倍,这意味着激发的产生要难得多。"Nevidomskyy说:"这可以理解为如果相应的镍离子上的自旋具有不同的"质量"。这个比喻是指重的篮球与网球混在一起,为了激发第二种类型的自旋,即较重的篮球,我们必须通过向材料照射更多的高能中子来施加更强的'踢'。"由此产生的对镍自旋的影响被称为自旋激子,人们通常会期望激子产生的"踢"的效果被限制在一个单一的原子中。但是实验的测量结果表明,"篮球"在一致地运动,创造了一种意想不到的波。更令人惊讶的是,这些波似乎在相对较高的温度下仍然存在,在那里晶体不再表现为磁铁。内维多姆斯基和来自加利福尼亚大学圣巴巴拉分校的理论家合著者莱昂-巴伦茨提供的解释是:较重的自旋激子--比喻中的篮球--随着周围较轻的磁性激子--比喻中的网球--的波动而晃动,如果这两类球之间的相互作用足够强,较重的自旋激子参与到类似于波的连贯运动中。"特别有趣的是,"戴说,"两种镍原子各自形成一个三角形晶格,因此这个晶格内的磁相互作用是受挫的。"在三角形晶格的磁性中,挫折指的是使所有的磁矩相对于它们的三个近邻反平行(上下)对齐的困难。了解磁挫折在三角形晶格中的作用是戴和Nevidomskyy两人多年来一直致力于解决的长期挑战之一。Nevidomskyy说:"找到一个谜题,与自己的预期相反,然后感到一种了解其起源的满足感,这是非常令人兴奋的。"...PC版:https://www.cnbeta.com.tw/articles/soft/1358691.htm手机版:https://m.cnbeta.com.tw/view/1358691.htm

封面图片

科学家实现在磁铁内捕捉光线

科学家实现在磁铁内捕捉光线科学家们发现,在某些磁性材料中捕获光线可以显著增强其固有特性。他们的研究考察了一种能够容纳强大激子的特定层状磁体,使其能够独立捕获光线。这种材料对磁性发生的光学反应明显强于普通磁体。梅农和他的团队在8月16日发表在《自然》(Nature)杂志上的新文章中详细介绍了一种层状磁体的特性,这种磁体承载着强结合激子--具有特别强光学相互作用的准粒子。正因为如此,这种材料能够独自捕获光线。正如他们的实验所显示的那样,这种材料对磁现象的光学响应要比典型磁体的光学响应强几个数量级。被困在磁性晶体内部的光能强烈增强其磁光相互作用。资料来源:RezlindBushati这项研究的主要作者弗洛里安-迪恩伯格(FlorianDirnberger)博士说:"由于光线在磁体内部来回反弹,相互作用得到了真正的增强。举个例子,当我们施加外部磁场时,光的近红外反射会发生很大变化,材料基本上会改变颜色。这是一种相当强烈的磁光响应。"梅农说:"通常情况下,光对磁的反应不会如此强烈。这就是为什么基于磁光效应的技术应用往往需要实施灵敏的光学检测方案。"关于这些进展如何造福于普通人,研究报告的合著者全嘉敏指出:"当今磁性材料的技术应用大多与磁电现象有关。鉴于磁和光之间如此强烈的相互作用,我们现在可以希望有一天能制造出磁性激光器,并可能重新考虑光控磁存储的旧概念。"...PC版:https://www.cnbeta.com.tw/articles/soft/1378245.htm手机版:https://m.cnbeta.com.tw/view/1378245.htm

封面图片

科学家发现一种前所未见的新型磁性Altermagnetism

科学家发现一种前所未见的新型磁性Altermagnetism一名PSI科学家与用于确认发现地磁的仪器说到磁铁,人们通常会想到容易粘在冰箱上的东西,科学上称之为铁磁体。但在大约一个世纪前,人类发现了另一种磁性材料家族,它们不具有这种特性,并将其称为反铁磁体。材料行为的差异可归结为这些材料中磁矩(也称为电子自旋)的自发排列。电子自旋与铁磁体的方向相同,因此在靠近金属表面时会产生磁性。在反铁磁体中,电子自旋方向相反,产生的磁性被抵消。这导致它们无法粘在冰箱上。在变磁性中,电子自旋是交替的,不会产生净宏观磁性。但是,电子能带结构具有很强的自旋极化,可以在材料的能带中翻转。这就是这种材料被称为"变磁体"的原因。2019年,中国科学院物理研究所研究员托马斯-荣格沃思(TomasJungwirth)发现了一类磁性材料,其电子自旋与铁磁体或反铁磁体的电子自旋不一致。2022年,Jungwirth与美因茨大学的研究人员一起,提出了存在一类新磁体的理论。在研究过程中,研究小组发现了200多种材料,从绝缘体到半导体,甚至超导体,都可能是改变磁体的候选材料。为了证实这些材料中存在独特的自旋对称性,研究人员与瑞士的SLS公司合作。他们使用自旋和角度分辨光发射光谱来观察材料中的电子结构。瑞士SLS的表面/界面光谱(SIS)光束线仪器他们对碲化锰进行了测试,这种双元素材料通常被归类为反铁磁体。然而,这种材料显示出电子带分裂成两种不同的状态,很像铁磁体。这证实了这种材料确实是一种改变磁体。第三种磁性材料的发现有助于利用自旋电子学提供下一代磁性存储器。在传统电子学中,人们利用电子的电荷。然而,在自旋电子学中,电子的自旋状态也被用来存储信息。新兴的计算领域一直在使用铁磁体来开发此类设备。然而,这些材料所显示的宏观磁性令人担忧,因为它可能会促进比特之间的串扰。由于改磁体不显示净磁性,但具有很强的自旋效应,因此可以作为自旋电子学的理想候选材料。"超电磁实际上并不是什么非常复杂的东西。它是一种完全基本的东西,几十年来就在我们眼前,而我们却没有注意到它,"荣格沃思在一份新闻稿中说。"它存在于人们抽屉里的许多晶体中。从这个意义上说,现在我们将它公之于众,世界各地的许多人将能够研究它,从而产生广泛的影响。研究成果发表在今天的《自然》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1418703.htm手机版:https://m.cnbeta.com.tw/view/1418703.htm

封面图片

国际科学大奖花落中国 70年来首次颁发给中国籍物理学家

国际科学大奖花落中国70年来首次颁发给中国籍物理学家此次,薛其坤和美国哈佛大学教授AshvinVishwanath共同凭借“对具有拓扑能带结构的材料的集体电子性质的开创性理论和实验研究获奖。量子反常霍尔效应是凝聚态物理中的一个重要量子效应。长期以来,使其“现身”并实现实验观测难度极大,是无数研究者奋力追寻而不得的科学目标。2012年底,在克服了一道又一道难关后,薛其坤和团队终于成功地在实验上观测到了量子反常霍尔效应,成为“世界首次”!量子反常霍尔效应的实验发现的最终测量样品和数据...PC版:https://www.cnbeta.com.tw/articles/soft/1392113.htm手机版:https://m.cnbeta.com.tw/view/1392113.htm

封面图片

科学家在二维磁体中“看到”旋转的准粒子

科学家在二维磁体中“看到”旋转的准粒子所有的磁体都含有被称为磁子的旋转类粒子。所有的磁铁都是如此,从挂在冰箱上的简单纪念品,到给你的电脑提供内存存储的光盘,再到研究实验室中使用的强大版本。一个磁子的旋转方向可以影响其相邻的磁子,而相邻的磁子又会影响其相邻的磁子的旋转,以此类推,就产生了所谓的自旋波。自旋波有可能比电更有效地传输信息,而且磁子可以作为“量子互连”,将量子比特“粘合”在一起,形成强大的计算机。PC版:https://www.cnbeta.com/articles/soft/1315515.htm手机版:https://m.cnbeta.com/view/1315515.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人