光伏电池大突破:新型铁电无铅材料有望使制造更简便、成本更低

光伏电池大突破:新型铁电无铅材料有望使制造更简便、成本更低美国能源部劳伦斯伯克利国家实验室(LawrenceBerkeleyNationalLaboratory)的科学家开发了一种钙钛矿结构的铁电化合物,它可能适合于生产无铅钙钛矿光伏电池。据悉,这种材料是一种晶体太阳能材料,具有内置电场,也称为“铁电性”。由于这一发现,制造太阳能电池设备将会变得更简单、也更便宜,而且效率也会更高。太阳能电池板需要将太阳能转化为电能,而其中就需要电场来将正电荷与负电荷分开。有鉴于此,制造商们通常会花费大量资金在太阳能电池的每一层上掺杂相关化学物质。劳伦斯伯克利国家实验室的新研究则提供了一种全新的简便方法。据称,这种新型铁电材料在实验室中由三溴化铯锗(CsGeBr3或CGB)制成,为制造太阳能电池器件提供了一种更简单且成本更低的方法。这项研究结果已于近期发表在了《科学进展》杂志上。研究人员表示,“这种新的铁电材料为制造太阳能电池设备打开了一扇更方便的大门。与传统的太阳能材料不同,CGB晶体本身就是极化的,这意味着晶体的一侧自然会产生正电荷,而另一侧会产生负电荷。所以不需要掺杂任何化学物质。”不仅如此,这种材料还是一种无铅“卤化物钙钛矿”,这是一种新兴的经济实惠且易于制造的太阳能材料。通常,性能最好的卤化物钙钛矿都含有铅,而铅会污染环境并引起公众健康问题。但上述新材料不含铅,性能也未受影响。“想象一下,有这样一种无铅太阳能材料,它不仅可以从太阳中获取能量,而且还具有自然、自发形成的电场,太阳能和电子行业的前景非常令人兴奋,”研究人员们表示。还值得一提的是,研究人员发现CGB的光吸收是可调的——跨越可见光到紫外光的光谱,这是太阳能电池高能量转换效率的理想范围。他们指出,在传统的铁电体中很少发现这种可调性。研究人员还指出,CGB不仅可以降低太阳能电池的制造成本,还可以用于推进新一代传感器和对光做出响应的超稳定存储设备。“我们预计这项研究将为进一步探索这类半导体铁电材料开辟一条道路,并挖掘出多功能材料(如光铁电材料)的新可能性。”他们总结道。PC版:https://www.cnbeta.com/articles/soft/1312569.htm手机版:https://m.cnbeta.com/view/1312569.htm

相关推荐

封面图片

隆基绿能申请钙钛矿电池专利

隆基绿能申请钙钛矿电池专利据国家知识产权局公告信息,隆基绿能最新申请了一项名为“一种钙钛矿太阳能电池、叠层太阳能电池及制造方法”的专利,拟应用于叠层电池领域。专利摘要显示,“本发明公开了一种钙钛矿太阳能电池、叠层太阳能电池及制造方法,涉及太阳能电池技术领域,以提升钙钛矿太阳能电池的光电转换效率。所述钙钛矿太阳能电池应用于叠层太阳能电池中。所述钙钛矿太阳能电池的制造方法用于制造所述钙钛矿太阳能电池。”(第一财经)

封面图片

科学家开发出制造新一代太阳能电池的新方法

科学家开发出制造新一代太阳能电池的新方法包括宾夕法尼亚州立大学教师NelsonDzade在内的一个国际研究小组报告了一种新方法,这种方法可以制造出更耐用的太阳能电池,同时还能高效地将太阳光转化为电能。资料来源:NelsonDzade包括宾夕法尼亚州立大学教师NelsonDzade在内的科学家们在《自然-能源》杂志上报告了他们的新方法,该方法可制造出更耐用的过氧化物太阳能电池,并仍能实现21.59%的高效率将太阳光转化为电能。约翰和威利-莱昂家族能源与矿产工程系能源与矿产工程助理教授、本研究的合著者德扎德说,透辉石是一种很有前途的太阳能技术,因为与传统的硅材料相比,这种电池可以在室温下用更少的能量制造,使其生产成本更低,更具可持续性。科学家们说,但用于制造这些设备的主要候选材料--有机-无机混合金属卤化物,含有易受潮、氧和热影响的有机成分,暴露在真实世界的条件下会导致性能迅速下降。一种解决方案是转而使用碘化铯铅等全无机包晶材料,这种材料具有良好的电气性能和对环境因素的超强耐受性。不过,这种材料是多晶体的,也就是说,它有多个具有不同晶体结构的相。科学家们说,其中两种光活性相对于太阳能电池来说是好的,但它们在室温下很容易转化为不良的非光活性相,从而引入缺陷,降低太阳能电池的效率。突破性的相异质结技术科学家们将碘化铯铅的两种光活性多晶体结合起来,形成了一种相异质结--它可以抑制向不良相的转变。异质结是通过堆叠具有不同光电特性的不同半导体材料形成的,就像太阳能电池中的层一样。太阳能设备中的这些结可以进行定制,以帮助从太阳中吸收更多能量,并更高效地将其转化为电能。Dzade说:"这项工作的美妙之处在于,它表明利用同一种材料的两种多晶体来制造相异质结太阳能电池是一种可行的方法。它提高了材料的稳定性,防止了两相之间的相互转换。两相之间形成的相干界面可使电子轻松流过设备,从而提高功率转换效率。这就是我们在这项工作中所展示的。"研究人员制造出的器件实现了21.59%的功率转换效率,属于此类方法中的最高水平,而且稳定性极佳。不仅如此,该装置在环境条件下储存200小时后,仍能保持90%以上的初始效率。Dzade说:"当从实验室扩展到实际太阳能模块时,我们的设计在太阳能电池面积超过7平方英寸(18.08平方厘米)的情况下,功率转换效率达到了18.43%。这些初步结果凸显了我们的方法在开发超大型过氧化物太阳能电池模块和可靠评估其稳定性方面的潜力。"研究人员对在原子尺度上对异质结的结构和电子特性进行了建模,并发现将两种光活性相结合在一起可以形成稳定而连贯的界面结构,从而促进高效的电荷分离和转移--这是实现高效太阳能设备的理想特性。Dzade在韩国全南大学的同事开发出了制造该设备的独特双沉积方法--一种相用热风技术沉积,另一种相用三源热蒸发技术沉积。韩国全南大学研究教授、论文第一作者SawantaS.Mali说,在沉积过程中添加少量分子和有机添加剂,进一步提高了器件的电性能、效率和稳定性。约翰和威利-莱昂家族能源与矿物工程系能源与矿物工程助理教授、该研究的共同作者尼尔森-德扎德(NelsonDzade)说:"我们相信,我们在这项工作中开发的双沉积技术将对制造高效、稳定的过氧化物太阳能电池产生重要影响。"研究人员说,这种双重沉积技术可以为开发更多基于全无机包晶或其他卤化物包晶成分的太阳能电池铺平道路。研究人员说,除了将该技术扩展到不同的成分外,未来的工作还包括使目前的相位异质结电池在实际条件下更加耐用,并将其扩展到传统太阳能电池板的尺寸。Dzade说:"有了这种方法,我们相信在不久的将来,这种材料的效率应该可以超过25%。一旦我们做到了这一点,商业化就指日可待了。...PC版:https://www.cnbeta.com.tw/articles/soft/1392487.htm手机版:https://m.cnbeta.com.tw/view/1392487.htm

封面图片

突破极限:串联太阳能电池转化效率超过20%

突破极限:串联太阳能电池转化效率超过20%这项研究发表在2024年3月4日出版的《能源材料与器件》杂志上。光伏技术是一种利用太阳光并将其转化为电能的技术,因其提供清洁的可再生能源而广受欢迎。科学家们不断努力提高太阳能电池的功率转换效率,即效率的衡量标准。传统单结太阳能电池的功率转换效率已超过20%。要使单结太阳能电池的功率转换效率达到肖克利-奎塞尔极限以上,需要更高的成本。然而,通过制造串联太阳能电池,可以克服单结太阳能电池的肖克利-奎塞尔极限。利用串联太阳能电池,研究人员可以通过将太阳能电池材料堆叠在一起获得更高的能源效率。研究小组利用一种名为硒化锑的半导体,致力于制造串联太阳能电池。过去对硒化锑的研究主要集中在单结太阳能电池的应用上。但研究小组知道,从带隙的角度来看,这种半导体可能被证明是串联太阳能电池的合适底部电池材料。"硒化锑是一种适用于串联太阳能电池的底部电池材料。然而,由于使用硒化锑作为底部电池的串联太阳能电池的报道很少,因此人们很少关注它的应用。"中国科学技术大学材料科学与工程学院教授陈涛说:"我们用它作为底部电池组装了一个具有高转换效率的串联太阳能电池,证明了这种材料的潜力。与使用单层半导体材料的单结太阳能电池相比,串联太阳能电池吸收阳光的能力更强。串联太阳能电池能将更多的太阳光转化为电能,因此比单结太阳能电池更节能。"演示概念验证串联太阳能电池,该电池由硒化锑和宽带隙过磷酸钙作为底部和顶部子电池吸收材料组成。通过优化顶部电池的透明电极和底部电池的制备工艺,该装置实现了超过20%的功率转换效率。来源:《能源材料与器件》,清华大学出版社研究小组制作了具有透明导电电极的过氧化物/硒化锑串联太阳能电池,以优化光谱响应。他们通过调整顶部电池透明电极层的厚度,获得了超过17%的高效率。他们通过引入双电子传输层,优化了硒化锑底部电池,实现了7.58%的功率转换效率。当他们用机械方法将顶部和底部电池组装成四端串联太阳能电池时,功率转换效率超过了20.58%,高于独立子电池的功率转换效率。他们的串联太阳能电池具有出色的稳定性和无毒成分。陈说:"这项工作提供了一种新的串联器件结构,并证明硒化锑是一种很有前景的吸收材料,可用于串联太阳能电池的底部电池应用。"展望未来,研究小组希望努力开发集成度更高的双端串联太阳能电池,并进一步提高器件性能。"硒化锑的高稳定性为制备两端串联太阳能电池提供了极大的便利,这意味着它在与多种不同类型的顶层电池材料搭配时可能会取得良好的效果。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1433485.htm手机版:https://m.cnbeta.com.tw/view/1433485.htm

封面图片

新策略可提升无铅钙钛矿太阳能电池转换效率

新策略可提升无铅钙钛矿太阳能电池转换效率记者13日从中国科学技术大学获悉,该校微电子学院特任研究员胡芹课题组在无铅钙钛矿太阳能电池研究中取得新进展。课题组针对非铅锡基钙钛矿半导体存在的自掺杂严重、缺陷密度高、非辐射复合损失大等问题,成功构建钙钛矿同质结,以促进光生载流子的分离和提取。这证明了同质结构筑策略在锡基钙钛矿太阳能电池领域的应用潜力,也为其他钙钛矿光电器件的结构优化提供了新思路。该成果日前发表于国际知名期刊《纳米快报》,并被选为封面论文。(科技日报)

封面图片

新型铜铟镓硒太阳能电池能效创纪录 转换效率高达23.64%

新型铜铟镓硒太阳能电池能效创纪录转换效率高达23.64%最新CIGS太阳能电池结构的电子显微镜分析。图片来源:《自然·能源》网站国际能源署数据显示,太阳能电池的部署量在全球范围内迅速增长,2022年太阳能发电量占全球电力超过6%。晶硅是太阳能电池中使用最广泛的材料,目前由晶硅制成太阳能电池最多可将逾22%的阳光转化为电力,这种太阳能电池成本低廉且性能比较稳定。研究人员希望以合理的生产成本获得30%以上的光电转换效率,由此开始关注CIGS等更高效的串联太阳能电池。但串联太阳能电池成本太高,迄今无法大规模生产和部署。薄膜太阳能电池中活性层的横截面,总厚度不超过3微米。利用隆德MAXIV设施测量的纳米XRF,可以高精度地测量太阳能电池中基体元素和微量元素(本例中为铷)的浓度。资料来源:MarikaEdoff最新研制出的CIGS太阳能电池包含一块玻璃板,玻璃板上覆盖了几个不同的层,每个层都具有特定功能。吸收阳光的材料由铜、铟、镓和硒化物组成,并添加了银和钠。材料被置于太阳能电池内,位于金属钼和透明的玻璃板之间。为使太阳能电池在分离电子方面尽可能高效,研究团队用氟化铷处理了CIGS层。研究人员表示,钠和铷这两种碱金属之间的平衡,以及CIGS层的组成是提高转换效率的关键。CIGS太阳能电池能效此前的世界纪录是23.35%,由日本SolarFrontier公司创造,再之前是德国巴登符腾堡太阳能和氢能源研究中心创下的纪录22.9%。...PC版:https://www.cnbeta.com.tw/articles/soft/1421703.htm手机版:https://m.cnbeta.com.tw/view/1421703.htm

封面图片

新材料可大幅提高太阳能电池板的效率

新材料可大幅提高太阳能电池板的效率美国利哈伊大学的一个研究小组创造了一种材料,它可以大大提高太阳能电池板的效率。使用这种材料作为太阳能电池活性层的原型显示出80%的平均光电吸收率、很高的光激发载流子生成率以及前所未有的高达190%的外部量子效率(EQE)--这远远超过了硅基材料的肖克利-奎塞尔理论效率极限,并将光伏量子材料领域推向了新的高度。ChindeuEkuma。资料来源:利哈伊大学物理学教授ChineduEkuma在《科学进展》(ScienceAdvances)杂志上发表了他与利哈伊大学博士生SrihariKastuar合作开发这种材料的论文。先进的材料特性这种材料的效率飞跃主要归功于其独特的"中间带态",即材料电子结构中的特定能级,使其成为太阳能转换的理想选择。这些态的能级在最佳子带间隙内,即材料能有效吸收阳光并产生电荷载流子的能量范围,约为0.78和1.26电子伏特。此外,这种材料在电磁波谱的红外线和可见光区域的高吸收率表现尤为出色。以CuxGeSe/SnS为活性层的薄膜太阳能电池示意图。资料来源:Ekuma实验室/利哈伊大学在传统太阳能电池中,最大EQE为100%,即每吸收一个太阳光光子,就能产生和收集一个电子。然而,过去几年中开发的一些先进材料和配置已证明能够从高能光子中产生和收集一个以上的电子,即EQE超过100%。斯里哈里-卡斯图阿尔,利哈伊大学。资料来源:利哈伊大学虽然这种多重激子生成(MEG)材料尚未广泛商业化,但它们有可能大大提高太阳能发电系统的效率。在Lehigh开发的材料中,中间带态能够捕获传统太阳能电池通过反射和产热等方式损失的光子能量。材料开发与潜力研究人员利用"范德华间隙"(层状二维材料之间的原子级微小间隙)开发出了这种新型材料。这些间隙可以限制分子或离子,材料科学家通常利用它们来插入或"插层"其他元素,以调整材料特性。为了开发新型材料,利哈伊大学的研究人员在硒化锗(GeSe)和硫化锡(SnS)制成的二维材料层之间插入了零价铜原子。Ekuma是计算凝聚态物理方面的专家,在对该系统进行了大量计算机建模并证明其理论前景后,他开发了这一原型作为概念验证。他说:"其快速反应和更高的效率有力地表明了铜掺杂GeSe/SnS作为一种量子材料在先进光伏应用中的使用潜力,为提高太阳能转换效率提供了一条途径。这是开发新一代高效太阳能电池的理想候选材料,将在满足全球能源需求方面发挥至关重要的作用。"虽然将新设计的量子材料整合到当前的太阳能系统中还需要进一步的研究和开发,但埃库马指出,用于制造这些材料的实验技术已经非常先进。随着时间的推移,科学家们已经掌握了将原子、离子和分子精确插入材料的方法。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1427195.htm手机版:https://m.cnbeta.com.tw/view/1427195.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人