六角萌宠登上《科学》封面 广东专家用它找到脑再生“开关”

六角萌宠登上《科学》封面广东专家用它找到脑再生“开关”通过模拟人类患病的环境、有毒害物质侵袭甚至饮食结构、行为模式,或直接用技术敲掉模式生物的单个基因,耐心观察。模式生物可以代替人类生病、试药、探索先进的医学理论。日前,广东省人民医院费继锋教授团队联合华大生命科学院研究院、武汉大学等多个科研团队,在国际顶级学术期刊《科学》(《Science》)上发表了题为:利用时空转录组技术解析蝾螈大脑再生的关键干细胞亚型的研究论文。PC版:https://www.cnbeta.com/articles/soft/1316511.htm手机版:https://m.cnbeta.com/view/1316511.htm

相关推荐

封面图片

从衰老到再生:蝾螈体内衰老的 "僵尸"细胞的存在增强了再生过程

从衰老到再生:蝾螈体内衰老的"僵尸"细胞的存在增强了再生过程红斑蝾螈Notophthalmusviridescens。通过研究具有显著再生能力的个体,研究人员发现,衰老细胞的存在加速了肢体再生过程。这些细胞分泌的因子向成熟的肌肉纤维发出信号,使其分化为肌肉祖细胞,从而增强再生能力。这一发现可以帮助研究人员了解为什么人类的再生能力有限,并有可能开发出与年龄相关疾病的新疗法。资料来源:MaximinaYun越来越多的证据表明,衰老的细胞也可能具有有益的作用,如伤口愈合或防止组织结疤。"几年前,我们的小组发现,衰老细胞存在于蝾螈肢体再生的关键阶段。有趣的是,其他小组随后在其他再生背景下发现了这些细胞,包括在哺乳动物中。"德累斯顿大学再生治疗中心(CRTD)和德累斯顿大学卓越生命物理学集群(PoL)以及马克斯-普朗克分子细胞生物学和遗传学研究所(MPI-CBG)的研究组长MaximinaYun博士解释说:"因此,我们想找出这些细胞是否以任何方式对再生本身作出贡献。"衰老的细胞促进再生Yun小组的研究人员开始研究蝾螈。这些动物具有独特的再生能力,能够重新长出它们身体的许多器官,包括失去的四肢。"蝾螈的肢体再生是一个迷人的过程。在几个星期内,它们重新长出一个功能齐全的肢体,"Yun博士解释说。为了检查衰老细胞的存在是否会影响肢体再生过程,Yun小组的研究人员找到了一种方法来调节伤口中衰老细胞的数量。该小组观察到,衰老细胞的存在增强了再生过程。"当伤口中存在更多的衰老细胞时,动物形成了一个更大的再生芽,或--我们称之为--胚胎组织。这是一个细胞的集合,将形成新肢体中所有需要的组织。组织越大,就有越多的细胞用于再生肢体,再生过程就越快。衰老细胞的存在似乎为再生过程提供了"燃料","Yun博士说。"僵尸"信号促进新的肌肉细胞更仔细地观察有无衰老细胞影响的组织,Yun团队发现了一个加强再生过程的新机制,并发现衰老细胞的存在增加了再生的肌肉细胞数量。他们表明,衰老细胞分泌的因子能刺激附近的肌肉组织在发育过程中退步,并产生新的肌肉。"研究结果表明,衰老细胞利用细胞间的交流来影响再生过程。它们分泌的分子向成熟的肌肉纤维发出信号,使其脱分化为肌肉祖细胞。这些细胞可以自我繁殖,也可以分化成新的肌肉细胞,从而加强再生过程。这种信号传递似乎是促进再生的一个重要部分,"Yun博士说。目前,该小组专注于肌肉,这是再生肢体中最重要的组织之一。然而,该小组已经在研究衰老细胞信号传递是否也有助于其他组织的再生。蝾螈的教训"蝾螈是为数不多的似乎能抵抗自然衰老过程的动物物种之一。它们不会出现典型的衰老迹象,也不会积累与年龄有关的疾病,如癌症。他们还具有非凡的愈合能力,"Yun博士说。这些动物可以再生它们身体中的几乎任何器官。研究蝾螈有助于Yun博士和她在CRTD的同事了解再生过程的原理,从长远来看,可能有助于解决为什么人类的再生能力非常有限这一难题。...PC版:https://www.cnbeta.com.tw/articles/soft/1359933.htm手机版:https://m.cnbeta.com.tw/view/1359933.htm

封面图片

战胜 "不可能" - 科学家通过脊髓再生逆转瘫痪

战胜"不可能"-科学家通过脊髓再生逆转瘫痪下胸椎脊髓再生突起投射到行走执行中心的全脊髓可视化。图片来源:EPFL/.Neurorestore当小鼠和人类的脊髓部分受损时,最初的瘫痪会随之出现广泛的、自发的运动功能恢复。然而,脊髓完全损伤后,脊髓的这种自然修复就不会发生,也就无法恢复。严重损伤后的有效恢复需要促进神经纤维再生的策略,但这些策略成功恢复运动功能的必要条件仍然难以捉摸。这项研究的资深作者马克-安德森(MarkAnderson)说:"五年前,我们证明了神经纤维可以在解剖学上完整的脊髓损伤中再生。但我们也意识到,这还不足以恢复运动功能,因为新纤维未能连接到病变另一侧的正确位置。"安德森是.NeuroRestore公司中枢神经系统再生部主任,也是Wyss生物和神经工程中心的科学家。下胸椎脊髓再生投射到行走执行中心的全脊髓可视化。图片来源:EPFL/.Neurorestore科学家们与加州大学洛杉矶分校(UCLA)和哈佛大学医学院的同行合作,利用日内瓦EPFL校园生物技术设施的先进设备进行了深入分析,并确定了哪种类型的神经元参与了部分脊髓损伤后的脊髓自然修复。该研究的第一作者乔丹-斯奎尔(JordanSquair)说:"我们利用单细胞核RNA测序法进行的观察不仅揭示了必须再生的特定轴突,而且还揭示了这些轴突必须与它们的天然目标重新连接才能恢复运动功能。"研究小组的研究成果发表在2023年9月22日出版的《科学》(Science)杂志上。他们的发现为设计多管齐下的基因疗法提供了依据。科学家们激活了小鼠体内已确定神经元的生长程序,使其神经纤维再生;上调特定蛋白质,支持神经元穿过病变核心生长;并施用引导分子,将再生神经纤维吸引到损伤下方的天然靶点。"Squair说:"当我们设计一种治疗策略,复制部分损伤后自发发生的脊髓修复机制时,我们受到了大自然的启发。下胸椎脊髓再生突起投射到行走执行中心的全脊髓可视化。图片来源:EPFL/.Neurorestore解剖学上脊髓完全损伤的小鼠恢复了行走能力,表现出的步态与部分损伤后恢复自然行走的小鼠的步态相似。这一观察结果揭示了再生疗法成功恢复神经创伤后运动功能的一个未知条件。这项研究的资深作者、.NeuroRestore公司的负责人GrégoireCourtine和JocelyneBloch说:"我们希望我们的基因疗法能与我们其他涉及脊髓电刺激的程序协同发挥作用。我们认为,治疗脊髓损伤的完整解决方案需要两种方法--基因疗法和脊髓刺激,前者用于重新生长相关神经纤维,后者用于最大限度地提高这些纤维和损伤部位脊髓产生运动的能力。"虽然在这种基因疗法应用于人体之前还必须克服许多障碍,但科学家们已经迈出了第一步,正在开发必要的技术,以便在未来几年实现这一创举。...PC版:https://www.cnbeta.com.tw/articles/soft/1386299.htm手机版:https://m.cnbeta.com.tw/view/1386299.htm

封面图片

生物 3D 打印神经构建体用于复杂组织再生 上海团队取得新进展

生物3D打印神经构建体用于复杂组织再生上海团队取得新进展近日,中国科学院上海硅酸盐研究所研究员吴成铁带领研究团队,在生物3D打印神经构建体用于复杂组织再生方面取得新进展。研究团队基于锂、钙、硅元素的促神经分化及神经保护作用,开发了基于Li-Ca-Si(LCS)生物陶瓷的生物墨水,并将其与神经干细胞结合,通过生物3D打印技术制备一种功能化的神经构建体。研究发现LCS基生物墨水释放的多种活性离子能够通过PI3K-AKT通路促进神经干细胞向神经元方向分化并诱导神经元成熟,展现出优异的神经调控活性。(澎湃新闻)

封面图片

科学家们通过再生肾脏来逆转小鼠的糖尿病损害

科学家们通过再生肾脏来逆转小鼠的糖尿病损害在这项新的研究中,新加坡和德国的研究人员调查了一个潜在的罪魁祸首--一种被称为白细胞介素-11(IL-11)的蛋白质,它已经被牵连到导致其他器官受损而产生的疤痕。在对小鼠进行仔细检查时,研究小组发现,当肾脏受到损害时,其微小内管的内衬细胞会释放IL-11,从而减缓细胞的生长,并引发一连串的分子炎症和瘢痕。但是,当IL-11被阻断时,使用基因工程小鼠缺乏IL-11,或者给小鼠提供阻断IL-11的抗体,这一过程被阻止,健康细胞可以再生以逆转现有的损害。"我们发现IL-11不利于肾脏功能,并引发了慢性肾脏疾病的发展,"该研究的通讯作者StuartCook教授说。"我们还表明,抗IL11疗法可以治疗肾衰竭,逆转已建立的慢性肾脏疾病,并通过促进小鼠的再生来恢复肾脏功能,同时长期使用是安全的。"该团队在实验室皿中的人类肾脏细胞测试中跟进了这一发现,并观察到类似的结果。研究人员对患有糖尿病肾病的细胞施用IL-11抗体,发现肾小管细胞可以再次增殖,从而逆转了疤痕和炎症,最终恢复了器官的功能。尽管结果看起来很有希望,但重要的是这项研究仍然处于非常早期的阶段,结果可能不容易带入人体测试。尽管如此,这仍然是科学家们在开发治疗方法时的一个引人入胜的新目标。该研究发表在《自然通讯》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1344025.htm手机版:https://m.cnbeta.com.tw/view/1344025.htm

封面图片

新发现的生物标记物对神经元再生有预测能力

新发现的生物标记物对神经元再生有预测能力神经元是构成我们大脑和脊髓的主要细胞,是受伤后再生最慢的细胞之一,许多神经元无法完全再生。尽管科学家在理解神经元再生方面取得了进展,但仍不清楚为什么有些神经元能够再生而另一些神经元却不能。加州大学圣地亚哥分校医学院的研究人员利用单细胞RNA测序(一种确定单个细胞中哪些基因被激活的方法)发现了一种新的生物标记,可用于预测神经元在受伤后是否会再生。他们在小鼠身上测试了他们的发现,发现该生物标志物在整个神经系统和不同发育阶段的神经元中始终可靠。该研究于2023年10月16日发表在《Neuron》杂志上。“单细胞测序技术正在帮助我们比以往任何时候都更详细地了解神经元的生物学,这项研究确实证明了这种能力,”资深作者、神经科学系教授郑滨海博士说。加州大学圣地亚哥分校医学院。“我们在这里发现的可能只是基于单细胞数据的新一代复杂生物标记物的开始。”研究人员重点关注皮质脊髓束的神经元,这是中枢神经系统的关键部分,有助于控制运动。受伤后,这些神经元是最不可能再生轴突的神经元之一——轴突是神经元用来相互交流的又长又薄的结构。这就是为什么大脑和脊髓损伤如此具有破坏性。神经元(此处以红色和黄色显示)是受伤后再生最慢的细胞之一。在小鼠大脑的这一部分中,黄色神经元正在再生,而红色神经元则无法再生。图片来源:加州大学圣地亚哥分校健康科学第一作者HugoKim博士说:“如果你的手臂或腿部受伤,这些神经可以再生,并且通常可以完全恢复功能,但中枢神经系统的情况并非如此。大多数大脑和脊髓损伤很难恢复,因为这些细胞的再生能力非常有限。”识别生物标志物研究人员利用单细胞RNA测序来分析脊髓损伤小鼠神经元的基因表达。他们利用现有的分子技术鼓励这些神经元再生,但最终,这只对部分细胞有效。这种实验设置使研究人员能够比较再生和非再生神经元的测序数据。此外,通过关注相对较少的细胞(仅超过300个),研究人员能够非常仔细地观察每个细胞。“就像每个人都是不同的一样,每个细胞都有自己独特的生物学特性,”郑说。“探索细胞之间的微小差异可以告诉我们很多关于这些细胞如何工作的信息。”HugoKim博士(左)在郑滨海博士(右)的监督下设计并执行了单细胞RNA测序实验。图片来源:加州大学圣地亚哥分校健康科学研究人员使用计算机算法分析测序数据,确定了一种独特的基因表达模式,可以预测单个神经元在受伤后是否最终会再生。该模式还包括一些以前从未涉及神经元再生的基因。“这就像神经元再生的分子指纹,”郑补充道。验证再生分类器为了验证他们的发现,研究人员在26个已发表的单细胞RNA测序数据集上测试了这种分子指纹(他们将其命名为再生分类器)。这些数据集包括来自神经系统各个部分和不同发育阶段的神经元。研究小组发现,除了少数例外,再生分类器成功预测了单个神经元的再生潜力,并能够重现先前研究中的已知趋势,例如出生后神经元再生的急剧下降。“根据来自完全不同研究领域的多组数据验证结果告诉我们,我们已经发现了有关神经元再生的基础生物学的一些基本知识,”郑说。“我们需要做更多的工作来完善我们的方法,但我认为我们已经发现了一种对所有再生神经元都通用的模式。”虽然小鼠身上的结果很有希望,但研究人员提醒说,目前再生分类器是一种帮助实验室神经科学研究人员的工具,而不是诊所患者的诊断测试。“在临床环境中使用单细胞测序仍然存在很多障碍,例如成本高、分析大量数据困难,以及最重要的是,无法获取感兴趣的组织,”郑说。“目前,我们有兴趣探索如何在临床前环境中使用再生分类器来预测新再生疗法的有效性,并帮助这些疗法更接近临床试验。”...PC版:https://www.cnbeta.com.tw/articles/soft/1391581.htm手机版:https://m.cnbeta.com.tw/view/1391581.htm

封面图片

中科院团队成功解析叶绿体基因转录机器的结构 研究成果登上《细胞》封面

中科院团队成功解析叶绿体基因转录机器的结构研究成果登上《细胞》封面中国科学院分子植物科学卓越创新中心张余研究团队和华中农业大学周菲研究团队合作,成功解析了叶绿体基因转录机器的结构。3月1日,该成果以封面文章的形式在线发表在国际顶级学术期刊《细胞》上。张余研究团队和合作者,利用叶绿体转化技术,在烟草叶绿体基因转录机器上引入特征性的“捕获标签”,通过纯化烟草内源的叶绿体基因转录机器,利用单颗粒冷冻电镜技术,最终解开了PEP的真面目。此项研究为植物叶绿体生物反应器的效率提升提供了着手点,助力重组疫苗、重组蛋白药物、和天然产物的生产。此外,还为光合作用系统基因表达水平的提高提供了新思路,助力植物高效碳汇。...PC版:https://www.cnbeta.com.tw/articles/soft/1421959.htm手机版:https://m.cnbeta.com.tw/view/1421959.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人