高效的新催化剂可将混合塑料垃圾转化为丙烷

高效的新催化剂可将混合塑料垃圾转化为丙烷塑料垃圾是我们这个时代最紧迫的环境问题之一,而对不同类型的塑料进行分类使得回收变得很棘手。现在,麻省理工学院的工程师们已经开发出一种有效的新催化剂,可以将混合塑料分解成丙烷,然后可以作为燃料燃烧或用于制造新塑料。PC版:https://www.cnbeta.com/articles/soft/1325465.htm手机版:https://m.cnbeta.com/view/1325465.htm

相关推荐

封面图片

新催化剂可将废物转化为有价值的环保产品

新催化剂可将废物转化为有价值的环保产品这种新的催化剂旨在向脂肪族碳氢化合物添加官能团,脂肪族碳氢化合物是仅由氢和碳组成的有机化合物。这些碳氢化合物通常不与水混合,由于缺乏官能团而形成独立的层。通过在这些碳氢化合物链中加入官能团,可以大大改变材料的特性,使其更容易回收。"天然气中的甲烷是最简单的碳氢化合物,只有碳-氢(CH)键。油和聚合物有碳原子链,由碳-碳(CC)键连接,"Sadow解释说。脂肪族碳氢化合物构成了大量的石油和精炼石油产品,如塑料和机油。这些材料"没有其他功能团,这意味着它们不容易被生物降解,"Sadow说。"因此,长期以来,催化领域的一个目标是能够将这些种类的材料,添加其他原子,如氧气,或从这些简单的化学品中建立新的结构。"不幸的是,向碳氢化合物链添加原子的传统方法需要大量的能量投入。首先,石油被加热和加压"裂解"成小的构建块。接下来,这些构件被用来生长链。最后,在链的末端添加所需的原子。在这种新方法中,现有的脂肪族碳氢化合物无需裂解,在低温下就能直接转化。Sadow的团队之前使用一种催化剂来打破这些碳氢化合物链中的CC键,同时将铝连接到较小的链的末端。接下来,他们插入了氧或其他原子以引入功能团。为了开发一个互补的过程,该团队找到了一种避免CC键断裂步骤的方法。根据起始材料的链长和产品的理想特性,研究人员想缩短链或简单地添加氧功能团。如果能避免CC裂解,原则上可以只把链从催化剂转移到铝上,然后加入空气来安装官能团。Sadow解释说,这种催化剂是通过将一种市售的锆化合物附着在市售的二氧化硅-氧化铝上合成的。这些物质都是地球上丰富的、廉价的,这对未来潜在的商业应用是有利的。此外,催化剂和反应物在可持续性和成本方面也很有优势。铝是地球上最丰富的金属,所使用的铝反应物的合成不会产生废弃的副产品。基于氧化锆的催化剂前体在空气中是稳定的,容易获得,并在反应器中被激活。因此,与很多对空气极其敏感的早期有机金属化学不同,这种催化剂前体很容易处理。这种化学反应是朝着能够影响各种塑料的物理特性的方向迈出的一步,例如使它们更坚固和更容易着色Sadow把这个项目的成功归功于iCOUP的合作性质。埃姆斯国家实验室的佩拉斯小组利用核磁共振(NMR)光谱学研究了催化剂结构。康奈尔大学和阿贡国家实验室的Coates、LaPointe和Delferro小组研究了聚合物结构和物理特性。伊利诺伊大学的Peters小组对聚合物功能化进行了统计建模。...PC版:https://www.cnbeta.com.tw/articles/soft/1350043.htm手机版:https://m.cnbeta.com.tw/view/1350043.htm

封面图片

新型催化剂可将二氧化碳高效转化为甲烷 转化率高达99.3%

新型催化剂可将二氧化碳高效转化为甲烷转化率高达99.3%DGIST的一个研究小组开发出一种先进的光催化剂,它能有效地将二氧化碳转化为甲烷,有可能为应对全球变暖提供一种可持续的解决方案。来自DGIST能源科学与工程系的InSoo-il教授及其团队成功开发出一种高效光催化剂。这项创新能够将导致气候变化的重要因素二氧化碳(CO2)转化为甲烷(CH4),也就是通常所说的天然气。全球变暖导致世界各地气候异常,威胁着人类的生存。减少温室气体是解决日益令人担忧的全球变暖问题的关键,这需要将大气中的二氧化碳转化为其他物质。光催化技术是一种环保解决方案,它只需利用太阳能和水就能将二氧化碳转化为有用的物质,如天然气。生产出的天然气可在日常生活中用作供暖、制冷系统和车辆的燃料。光催化材料的改进研究小组将吸收可见光和红外线的硒化镉与二氧化钛(一种金属氧化物和著名的光催化材料)结合起来,高效地将二氧化碳转化为天然气。以前,人们曾将具有周期性晶格结构的结晶二氧化钛作为光催化材料进行分析。然而,由于颗粒的规则排列,钛的三价阳离子(Ti3+)的活性位点的形成受到了限制。为了克服这个问题,In教授的团队使用无定形二氧化钛改进了催化反应,因为无定形二氧化钛可以通过缺乏晶格结构周期性的不规则颗粒排列形成更多的Ti3+活性位点。除了催化作用得到改善外,电荷转移过程也很稳定,可确保有足够的电子参与反应。这有助于将二氧化碳转化为碳化合物,特别是甲烷燃料。此外,与需要高温再生的传统光催化剂不同,无定形催化剂在不加热的情况下向反应器供氧,可在一分钟内再生。高效率和未来研究方向研究小组新开发的无定形二氧化钛-硒化镉光催化剂(TiO2-CdSe)在光反应18小时后的前6小时内甲烷转化率仍高达99.3%,是具有相同成分的晶体光催化剂(C-TiO2-CdSe)的4.22倍。"这项研究的重要意义在于,我们开发出了一种具有再生活性位点的催化剂,并通过计算化学研究确定了利用非晶态催化剂将二氧化碳转化为甲烷的机理,"DGISTIn教授说。"我们将开展后续研究,以改善无定形光催化剂的能量损失,并提高其长期稳定性,从而实现该技术的未来商业化。"编译来源:ScitechDailyDOI:10.1016/j.apcatb.2024.124006...PC版:https://www.cnbeta.com.tw/articles/soft/1434187.htm手机版:https://m.cnbeta.com.tw/view/1434187.htm

封面图片

金纳米粒子催化剂有助于将塑料废料转化为有用的化合物

金纳米粒子催化剂有助于将塑料废料转化为有用的化合物金纳米粒子催化剂可以回收聚酯和生物质来自东京都立大学的研究人员发现,支持在氧化锆表面的金纳米粒子有助于将像生物质和聚酯这样的废料变成有机硅烷化合物,这是用于广泛用途的宝贵化学品。新方案利用了金纳米粒子和氧化锆支持物的两性(酸和碱)性质之间的合作。其结果是一个需要较少条件的反应,以及一个更环保的废物升级回收方法。循环利用是人类解决全球塑料垃圾问题的一个重要部分。它的大部分内容是将塑料垃圾变成塑料产品。然而,科学家们也一直在探索其他方法,以鼓励将废物材料作为一种资源使用。这包括升级再造,将废料转化为全新的化合物和产品,这些化合物和产品可能比用来制造它们的材料更有价值。醚和酯在由安装在氧化锆基底上的金纳米粒子组成的混合催化剂存在下与二硅烷反应。金纳米粒子的存在以及支持物上的酸性和碱性位点有助于将醚和酯基转化为硅烷基。资料来源:东京都立大学由三浦宏树副教授领导的东京都大学的一个研究小组一直致力于将塑料和生物质转化为有机硅烷,有机硅烷是连接有硅原子的有机分子,形成碳硅键。有机硅烷是高性能涂料的宝贵材料,也是生产药品和农用化学品的中间体。然而,硅原子的添加往往涉及对空气和水分敏感的试剂,需要高温,更不用说苛刻的酸性或碱性条件可能使转换过程本身成为环境负担。现在,该团队已经应用了一种混合催化剂材料,由支持在氧化锆载体上的金纳米粒子组成。该催化剂采用醚基和酯基,这两种基团在聚酯等塑料和纤维素等生物质化合物中都很丰富,并帮助它们与一种被称为二硅烷的含硅化合物发生反应。在溶液中温和加热的情况下,他们成功地在酯或醚基所在的地方创建了有机硅烷基团。通过对机制的详细研究,该团队发现,金纳米粒子和支持物的两性(包括碱性和酸性)性质之间的合作是在温和条件下有效、高产地转换原材料的原因。鉴于塑料垃圾处理通常需要燃烧或苛刻的酸性/碱性条件,该工艺本身已经提供了一条在要求低得多的条件下分解聚酯的简便途径。然而,这里的关键点是,反应的产物本身是有价值的化合物,可以用于新的应用。该团队希望,这条生产有机硅烷的新路线构成了我们通往碳中和未来的途径的一部分,在那里,塑料不会进入环境,而是成为社会中更有用的产品。...PC版:https://www.cnbeta.com.tw/articles/soft/1350321.htm手机版:https://m.cnbeta.com.tw/view/1350321.htm

封面图片

环保新突破:单原子催化剂将二氧化碳转化为乙醇

环保新突破:单原子催化剂将二氧化碳转化为乙醇串联单原子电催化剂实现二氧化碳还原成乙醇。资料来源:DICP二氧化碳还原的挑战Cn(n≥2)液体产品因其高能量密度和易于储存而备受青睐。然而,由于对机理的理解有限,C-C偶联途径的操作仍是一项挑战。最近,由张涛教授和黄延强教授领导的研究小组在美国加利福尼亚大学洛杉矶分校进行了一项突破性研究。中国科学院大连化学物理研究所的张涛和黄延强教授领导的研究小组开发了一种锡基串联电催化剂(SnS2@Sn1-O3G),在-0.9VRHE和17.8mA/cm2的几何电流密度条件下,该催化剂可重复生成乙醇,法拉第效率高达82.5%。这项研究最近发表在科学杂志《自然-能源》上。研究人员通过在三维碳泡沫上进行SnBr2和硫脲的溶热反应,制造出SnS2@Sn1-O3G。这种电催化剂由SnS2纳米片和原子分散的Sn原子(Sn1-O3G)组成。机理研究表明,这种Sn1-O3G可分别吸附*CHO和*CO(OH)中间体,从而通过一种前所未有的甲酰基-碳酸氢盐偶联途径促进C-C键的形成。此外,通过使用同位素标记的反应物,研究人员追踪了在Sn1-O3G催化剂上形成的最终C2产物中C原子的形成路径。分析表明,产物中的甲基C来自甲酸,而亚甲基C来自二氧化碳。黄教授说:"我们的研究为乙醇合成中C-C键的形成提供了一个替代平台,并为操纵二氧化碳还原途径以获得所需的产品提供了一种策略。"...PC版:https://www.cnbeta.com.tw/articles/soft/1398721.htm手机版:https://m.cnbeta.com.tw/view/1398721.htm

封面图片

新型催化剂能在几分钟内彻底分解持久性塑料污染

新型催化剂能在几分钟内彻底分解持久性塑料污染新工艺可回收99%的单体(如图所示),即尼龙的组成部分。回收单体后,工业界可将尼龙循环利用,制成价值更高的产品。资料来源:美国西北大学现在,美国西北大学的化学家们开发出了一种新型催化剂,可以在几分钟内快速、干净、彻底地分解尼龙-6,而且不会产生有害的副产品。更妙的是该工艺不需要有毒溶剂、昂贵材料或极端条件,因此可用于日常应用。这种新型催化剂不仅能在环境修复方面发挥重要作用,还能在将尼龙-6废料升级再造为更高价值的产品方面迈出第一步。观看催化剂降解1克Nylon-6样品的过程。资料来源:美国西北大学这项研究最近发表在《化学》杂志上。该研究的资深作者、西北大学的托宾-马克斯(TobinMarks)说:"全世界都意识到了塑料问题。塑料是我们社会的一部分,我们使用了大量的塑料。但问题是:用完之后我们该怎么办?理想情况下,我们不会将其焚烧或填埋。我们要回收利用。我们正在开发能分解这些聚合物的催化剂,使它们恢复到原来的形态,这样就可以重新利用了"。马克斯是西北大学温伯格文理学院查尔斯-莫里森和艾玛-莫里森化学教授、弗拉基米尔-伊帕蒂耶夫催化化学教授,以及西北大学麦考密克工程学院材料科学与工程教授。他还是PaulaM.Trienens可持续发展与能源研究所的教员。西北大学的合著者包括化学与生物工程系萨拉-丽贝卡-罗兰(SarahRebeccaRoland)教授兼麦考密克高级副院长琳达-布罗德贝尔特(LindaJ.Broadbelt),以及马克斯研究小组的研究助理教授约西-克拉提什(YosiKratish)。致命的难题从衣服、地毯到安全带,尼龙-6存在于大多数人每天使用的各种材料中。但是,当人们用完这些材料后,它们最终会被填埋,或者更糟糕的是:散落在包括海洋在内的环境中。据世界野生动物联盟称,每年被遗弃在海洋中的渔具多达100万磅,其中由尼龙-6构成的渔网至少占太平洋大垃圾带的46%。一只被废弃渔网缠住的海龟。资料来源:美国国家海洋和大气管理局"渔网使用几年后就会失去使用性能,"论文的第一作者、马克斯实验室的博士后研究员叶立伟(音译)说。"它们会被水严重浸泡,很难从海里捞出来。而且它们的更换成本很低,人们就把它们留在水里,然后再买新的。""海洋中有大量垃圾,"马克斯补充道。"纸板和食物垃圾会生物降解。金属沉入海底。然后就剩下塑料了。"最环保的溶剂是无溶剂目前处理尼龙-6的方法仅限于简单地将其埋入垃圾填埋场。焚烧尼龙-6时,会排放出有毒污染物,如氮氧化物(与包括过早死亡在内的各种健康并发症有关)或二氧化碳(一种臭名昭著的强效温室气体)。虽然其他实验室也探索过降解尼龙-6的催化剂,但这些催化剂需要在极端条件下使用(如温度高达350摄氏度)、高压蒸汽(耗能高且效率低)和/或有毒溶剂,而这些只会造成更多污染。马克斯说:"可以用酸来溶解塑料,但这样就会留下脏水。怎么处理这些水?我们的目标始终是使用绿色溶剂。有哪种溶剂比不使用溶剂更环保呢?"新型催化剂可在几分钟内降解尼龙6样品。资料来源:美国西北大学回收用于升级再循环的构件为了绕过这些问题,研究人员研究了马克斯实验室已经开发出的一种新型催化剂。这种催化剂利用了钇(一种廉价的地球富集金属)和镧离子。当研究小组将尼龙-6样品加热到熔化温度,并在不使用溶剂的情况下使用催化剂时,塑料就会分崩离析--还原成其原始的结构单元,而不会留下副产品。"你可以把聚合物想象成一条项链或一串珍珠,"马克斯解释道。"在这个比喻中,每颗珍珠都是一个单体。这些单体就是构件。我们设计了一种方法来分解项链,但恢复这些珍珠"。在实验中,马克斯和他的团队能够回收99%的塑料原始单体。原则上,这些单体可以再循环利用,制成价值更高的产品,这些产品目前因其强度和耐用性而需求量很大。"回收尼龙实际上比普通尼龙更值钱,"马克斯说。"许多高端时尚品牌都在服装中使用回收尼龙。"除了回收率高的单体外,这种催化剂还具有高度的选择性--只对尼龙-6聚合物起作用,而不会破坏周围的材料。这意味着业界可以将催化剂用于大量未分类的废料,并选择性地针对尼龙-6。"如果没有选择性催化剂,如何将尼龙从其他废料中分离出来?需要雇人对所有废料进行分类,以去除尼龙。这样做既昂贵又低效。但如果催化剂只降解尼龙,而把其他东西都留下来,那效率就高得惊人了。"回收这些单体还可以避免从头开始生产更多塑料。这些单体是用原油生产的,因此会产生巨大的碳足迹。在为新工艺申请专利后,马克斯和他的团队已经收到了潜在工业合作伙伴的兴趣。他们希望其他人能大规模使用他们的催化剂,帮助解决全球塑料问题。"我们的研究代表着聚合物回收和可持续材料管理领域向前迈出的重要一步,"Ye说。"这种创新方法解决了当前回收技术中的一个关键缺口,为尼龙废料问题提供了一种实用高效的解决方案。我们相信,它对减少塑料的环境足迹和促进循环经济具有重要意义。"...PC版:https://www.cnbeta.com.tw/articles/soft/1401857.htm手机版:https://m.cnbeta.com.tw/view/1401857.htm

封面图片

科学家将塑料垃圾转化为有价值的土壤添加剂

科学家将塑料垃圾转化为有价值的土壤添加剂然而,Abdul-Aziz警告说,还需要做更多的工作来证实这种木炭在农业中的效用。塑料制炭过程是在加州大学河滨分校马兰和罗斯玛丽-伯恩斯工程学院开发的。它涉及将两种常见的塑料之一与玉米废料--剩余的秸秆、叶子、外壳和棒子--统称为玉米秸秆。然后用高度压缩的热水对混合物进行烹制,这一过程被称为水热碳化。高度多孔的炭是用聚苯乙烯(用于泡沫塑料包装的塑料)和聚对苯二甲酸乙二醇酯(或称PET)生产的,这种材料通常用于制造水和苏打水瓶以及其他许多产品。加利福尼亚州河滨市费尔蒙特公园的小河床上的塑料垃圾。资料来源:DavidDanelski/UCR的照片在这项研究之前,曾有过一次单独使用玉米秸秆来制作活性炭的成功尝试,用于过滤饮用水中的污染物。在早期的研究中,仅用玉米秸秆制成的木炭经氢氧化钾活化后,能够吸收测试水样中98%的污染物香兰素。在后续研究中,Abdul-Aziz和她的同事想知道由玉米秸秆和塑料结合制成的活性炭是否也能成为一种有效的水处理媒介。如果是这样,塑料废料可以被重新利用来清理水污染。但她说,由这种混合物制成的活性炭只吸收了测试水样中约45%的香兰素--使其对水的净化没有效果。她说:"我们的理论是,在材料的表面可能还有一些残留的塑料,这阻止了表面上这些(香兰素)分子的一些吸收。"木炭和活性炭的制作过程尽管如此,通过结合塑料和植物生物质废物制造高孔隙率木炭的能力是一个重要的发现,正如发表在ACSOmega杂志上的论文《塑料和玉米秸秆共同分解产生木炭和活性炭的协同和拮抗作用》所详细描述的那样。主要作者是MarkGale,他曾是UCR的博士生,现在是HarveyMudd学院的讲师。UCR的本科生PeterNguyen是共同作者,Abdul-Aziz是通讯作者。"这可能是一种非常有用的生物炭,因为它是一种非常高的表面积材料,"Abdul-Aziz说。"因此,如果我们只是停留在木炭上,而不是让它在变成活性炭,我认为有很多有用的方法,我们可以利用它。"塑料本质上是一种固体形式的石油,它在环境中积累,在那里污染、纠缠、窒息并杀死不慎摄入的鱼、鸟和其他动物。塑料也会分解成微粒子,进入我们的身体,损害细胞或诱发炎症和免疫反应。不幸的是,回收旧塑料的成本比用石油制造新塑料的成本更高。阿卜杜勒-阿齐兹的实验室采取了一种不同的回收方法。它致力于将塑料和植物生物质废料等有害的废品通过升级改造成有价值的商品重新投入经济循环。...PC版:https://www.cnbeta.com.tw/articles/soft/1339135.htm手机版:https://m.cnbeta.com.tw/view/1339135.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人