新催化剂可将废物转化为有价值的环保产品

新催化剂可将废物转化为有价值的环保产品这种新的催化剂旨在向脂肪族碳氢化合物添加官能团,脂肪族碳氢化合物是仅由氢和碳组成的有机化合物。这些碳氢化合物通常不与水混合,由于缺乏官能团而形成独立的层。通过在这些碳氢化合物链中加入官能团,可以大大改变材料的特性,使其更容易回收。"天然气中的甲烷是最简单的碳氢化合物,只有碳-氢(CH)键。油和聚合物有碳原子链,由碳-碳(CC)键连接,"Sadow解释说。脂肪族碳氢化合物构成了大量的石油和精炼石油产品,如塑料和机油。这些材料"没有其他功能团,这意味着它们不容易被生物降解,"Sadow说。"因此,长期以来,催化领域的一个目标是能够将这些种类的材料,添加其他原子,如氧气,或从这些简单的化学品中建立新的结构。"不幸的是,向碳氢化合物链添加原子的传统方法需要大量的能量投入。首先,石油被加热和加压"裂解"成小的构建块。接下来,这些构件被用来生长链。最后,在链的末端添加所需的原子。在这种新方法中,现有的脂肪族碳氢化合物无需裂解,在低温下就能直接转化。Sadow的团队之前使用一种催化剂来打破这些碳氢化合物链中的CC键,同时将铝连接到较小的链的末端。接下来,他们插入了氧或其他原子以引入功能团。为了开发一个互补的过程,该团队找到了一种避免CC键断裂步骤的方法。根据起始材料的链长和产品的理想特性,研究人员想缩短链或简单地添加氧功能团。如果能避免CC裂解,原则上可以只把链从催化剂转移到铝上,然后加入空气来安装官能团。Sadow解释说,这种催化剂是通过将一种市售的锆化合物附着在市售的二氧化硅-氧化铝上合成的。这些物质都是地球上丰富的、廉价的,这对未来潜在的商业应用是有利的。此外,催化剂和反应物在可持续性和成本方面也很有优势。铝是地球上最丰富的金属,所使用的铝反应物的合成不会产生废弃的副产品。基于氧化锆的催化剂前体在空气中是稳定的,容易获得,并在反应器中被激活。因此,与很多对空气极其敏感的早期有机金属化学不同,这种催化剂前体很容易处理。这种化学反应是朝着能够影响各种塑料的物理特性的方向迈出的一步,例如使它们更坚固和更容易着色Sadow把这个项目的成功归功于iCOUP的合作性质。埃姆斯国家实验室的佩拉斯小组利用核磁共振(NMR)光谱学研究了催化剂结构。康奈尔大学和阿贡国家实验室的Coates、LaPointe和Delferro小组研究了聚合物结构和物理特性。伊利诺伊大学的Peters小组对聚合物功能化进行了统计建模。...PC版:https://www.cnbeta.com.tw/articles/soft/1350043.htm手机版:https://m.cnbeta.com.tw/view/1350043.htm

相关推荐

封面图片

新型催化剂可将二氧化碳高效转化为甲烷 转化率高达99.3%

新型催化剂可将二氧化碳高效转化为甲烷转化率高达99.3%DGIST的一个研究小组开发出一种先进的光催化剂,它能有效地将二氧化碳转化为甲烷,有可能为应对全球变暖提供一种可持续的解决方案。来自DGIST能源科学与工程系的InSoo-il教授及其团队成功开发出一种高效光催化剂。这项创新能够将导致气候变化的重要因素二氧化碳(CO2)转化为甲烷(CH4),也就是通常所说的天然气。全球变暖导致世界各地气候异常,威胁着人类的生存。减少温室气体是解决日益令人担忧的全球变暖问题的关键,这需要将大气中的二氧化碳转化为其他物质。光催化技术是一种环保解决方案,它只需利用太阳能和水就能将二氧化碳转化为有用的物质,如天然气。生产出的天然气可在日常生活中用作供暖、制冷系统和车辆的燃料。光催化材料的改进研究小组将吸收可见光和红外线的硒化镉与二氧化钛(一种金属氧化物和著名的光催化材料)结合起来,高效地将二氧化碳转化为天然气。以前,人们曾将具有周期性晶格结构的结晶二氧化钛作为光催化材料进行分析。然而,由于颗粒的规则排列,钛的三价阳离子(Ti3+)的活性位点的形成受到了限制。为了克服这个问题,In教授的团队使用无定形二氧化钛改进了催化反应,因为无定形二氧化钛可以通过缺乏晶格结构周期性的不规则颗粒排列形成更多的Ti3+活性位点。除了催化作用得到改善外,电荷转移过程也很稳定,可确保有足够的电子参与反应。这有助于将二氧化碳转化为碳化合物,特别是甲烷燃料。此外,与需要高温再生的传统光催化剂不同,无定形催化剂在不加热的情况下向反应器供氧,可在一分钟内再生。高效率和未来研究方向研究小组新开发的无定形二氧化钛-硒化镉光催化剂(TiO2-CdSe)在光反应18小时后的前6小时内甲烷转化率仍高达99.3%,是具有相同成分的晶体光催化剂(C-TiO2-CdSe)的4.22倍。"这项研究的重要意义在于,我们开发出了一种具有再生活性位点的催化剂,并通过计算化学研究确定了利用非晶态催化剂将二氧化碳转化为甲烷的机理,"DGISTIn教授说。"我们将开展后续研究,以改善无定形光催化剂的能量损失,并提高其长期稳定性,从而实现该技术的未来商业化。"编译来源:ScitechDailyDOI:10.1016/j.apcatb.2024.124006...PC版:https://www.cnbeta.com.tw/articles/soft/1434187.htm手机版:https://m.cnbeta.com.tw/view/1434187.htm

封面图片

新型太阳能催化剂可在捕捉甲烷后生成纯氢和碳

新型太阳能催化剂可在捕捉甲烷后生成纯氢和碳催化专家理查德-布莱尔(RichardBlair,左)和纳米技术专家劳伦-泰塔德(LaureneTetard)(均来自佛罗里达大学)联手发现了令人兴奋的光催化新技术图/中佛罗里达大学中佛罗里达大学纳米科学技术中心和佛罗里达太空研究所的研究人员表示,他们已经研制出一种富含硼的光催化剂,这种催化剂具有纳米级缺陷或结构不规则,可以将甲烷等碳氢化合物链拆分成无害成分。输入仅仅是太阳光(如果可能的话,进行浓缩)和含有碳氢化合物的空气。输出是纯氢(可用于各种能源目的)和纯碳(另一种可销售的商品,具有导热性和导电性,还可用作润滑剂等)。重要的是,该工艺不会产生二氧化碳或一氧化碳。这与利用甲烷和水生产氢气或合成气的典型工业流程形成了鲜明对比,后者会排放大量的二氧化碳或一氧化碳。加州大学弗吉尼亚分校催化专家理查德-布莱尔在一份新闻稿中说:"这项发明实际上是一举两得。我们可以获得绿色氢气,还可以去除,而不是真正封存甲烷。将甲烷加工成氢和纯碳后可用于电池等用途。我们的工艺将甲烷这种温室气体转化为非温室气体和两种有价值的产品--氢和碳--我们已经从循环中去除甲烷。"研究小组认为,他们的工作可以大大降低能源生成催化剂的成本,扩大他们工作的可见光频率范围,并提高太阳能光催化的效率。它不仅可以在不需要水的情况下实现比绿色更环保的氢气的工业生产,还可以为直接捕捉大气中的甲烷提供一种商业上可行的方法。甲烷是农业、垃圾填埋场、废水处理设施和一些主要工业流程中不可避免的副产品。天然气生产商在钻探甲烷时,甲烷就会大量泄漏出来,并通过管道和配件输送到家庭和工业,在那里甲烷通常会被燃烧,产生更多的二氧化碳。人类驱动的气候变化已经开始导致大气中甲烷的显著飙升,这要归功于热带湿地的扩大(甲烷从湿地中分解释放出来),以及极地永久冻土的融化(永久冻土会截留大量甲烷)。如果这种光催化剂在商业规模上证明是可行的,那么太阳能驱动的甲烷捕集技术就有可能部署在大型甲烷排放点周围,同时产生多种收入来源,这无疑是一个令人兴奋的想法。布莱尔说:"在我们出现之前,这种氮化硼一直被认为是惰性的。也许是用于润滑剂,也许是化妆品。但它没有任何化学用途。然而,通过缺陷工程,研究团队发现这种化合物在生产碳和绿色氢气方面具有巨大潜力,而且可能会大量生产。"该团队正在寻找许可和赞助研究的机会,以推进该技术的发展。...PC版:https://www.cnbeta.com.tw/articles/soft/1378423.htm手机版:https://m.cnbeta.com.tw/view/1378423.htm

封面图片

高效的新催化剂可将混合塑料垃圾转化为丙烷

高效的新催化剂可将混合塑料垃圾转化为丙烷塑料垃圾是我们这个时代最紧迫的环境问题之一,而对不同类型的塑料进行分类使得回收变得很棘手。现在,麻省理工学院的工程师们已经开发出一种有效的新催化剂,可以将混合塑料分解成丙烷,然后可以作为燃料燃烧或用于制造新塑料。PC版:https://www.cnbeta.com/articles/soft/1325465.htm手机版:https://m.cnbeta.com/view/1325465.htm

封面图片

金纳米粒子催化剂有助于将塑料废料转化为有用的化合物

金纳米粒子催化剂有助于将塑料废料转化为有用的化合物金纳米粒子催化剂可以回收聚酯和生物质来自东京都立大学的研究人员发现,支持在氧化锆表面的金纳米粒子有助于将像生物质和聚酯这样的废料变成有机硅烷化合物,这是用于广泛用途的宝贵化学品。新方案利用了金纳米粒子和氧化锆支持物的两性(酸和碱)性质之间的合作。其结果是一个需要较少条件的反应,以及一个更环保的废物升级回收方法。循环利用是人类解决全球塑料垃圾问题的一个重要部分。它的大部分内容是将塑料垃圾变成塑料产品。然而,科学家们也一直在探索其他方法,以鼓励将废物材料作为一种资源使用。这包括升级再造,将废料转化为全新的化合物和产品,这些化合物和产品可能比用来制造它们的材料更有价值。醚和酯在由安装在氧化锆基底上的金纳米粒子组成的混合催化剂存在下与二硅烷反应。金纳米粒子的存在以及支持物上的酸性和碱性位点有助于将醚和酯基转化为硅烷基。资料来源:东京都立大学由三浦宏树副教授领导的东京都大学的一个研究小组一直致力于将塑料和生物质转化为有机硅烷,有机硅烷是连接有硅原子的有机分子,形成碳硅键。有机硅烷是高性能涂料的宝贵材料,也是生产药品和农用化学品的中间体。然而,硅原子的添加往往涉及对空气和水分敏感的试剂,需要高温,更不用说苛刻的酸性或碱性条件可能使转换过程本身成为环境负担。现在,该团队已经应用了一种混合催化剂材料,由支持在氧化锆载体上的金纳米粒子组成。该催化剂采用醚基和酯基,这两种基团在聚酯等塑料和纤维素等生物质化合物中都很丰富,并帮助它们与一种被称为二硅烷的含硅化合物发生反应。在溶液中温和加热的情况下,他们成功地在酯或醚基所在的地方创建了有机硅烷基团。通过对机制的详细研究,该团队发现,金纳米粒子和支持物的两性(包括碱性和酸性)性质之间的合作是在温和条件下有效、高产地转换原材料的原因。鉴于塑料垃圾处理通常需要燃烧或苛刻的酸性/碱性条件,该工艺本身已经提供了一条在要求低得多的条件下分解聚酯的简便途径。然而,这里的关键点是,反应的产物本身是有价值的化合物,可以用于新的应用。该团队希望,这条生产有机硅烷的新路线构成了我们通往碳中和未来的途径的一部分,在那里,塑料不会进入环境,而是成为社会中更有用的产品。...PC版:https://www.cnbeta.com.tw/articles/soft/1350321.htm手机版:https://m.cnbeta.com.tw/view/1350321.htm

封面图片

绿色化学技术新突破 研究人员将氨转化为可持续氮源

绿色化学技术新突破研究人员将氨转化为可持续氮源通过主族元素化合物对氨进行可逆活化和催化转移。资料来源:弗兰克-布雷赫,德国工业技术大学胺是农用和医药化学品以及洗涤剂、染料、润滑剂和涂料的基本成分。此外,还可用作生产聚氨酯的催化剂。胺还可用于炼油厂和发电厂的气体洗涤器。通过破坏氮和氢之间的强键(即活化),氨分子至少在理论上可以转移到其他分子上,如不饱和碳氢化合物。例如,将氨转移到化学工业中的重要物质乙烯上就会产生乙胺。化学家将这种加成称为氢化反应。然而,氨和乙烯之间不易发生反应。反应的发生需要催化剂。然而,基于过渡金属的传统催化剂会与氨发生反应而失去活性。"因此,非活化烯烃与氨的氢化反应被认为是催化领域的一大挑战与目标,"KIT无机化学研究所分子化学部研究小组负责人FrankBreher教授说。氨的活化和催化转移通过与帕德博恩大学(PaderbornUniversity)和马德里康普顿斯大学(ComplutenseUniversityofMadrid)的研究人员合作,无机化学研究所的弗兰克-布雷赫(FrankBreher)教授和费利克斯-克雷默(FelixKrämer)博士现在距离实现这一具有挑战性的目标又近了一步。"我们已经开发出一种氨的活化系统,它不是基于过渡金属,而是基于主族元素。活化和随后转移氨的"原子经济"过程不会产生任何废物,这在可持续发展方面具有特别意义,"布雷赫说。相关研究成果现已发表在《自然-化学》杂志上。研究小组制备出了一种所谓的受挫路易斯对(FLP),它由作为电子对受体的酸和作为电子对供体的碱组成。通常情况下,两者会相互反应并产生加合物。如果阻止或至少限制加合物的形成,就会产生受挫情况,分子很容易与氨等小分子发生反应。"关键是要抑制反应性,使其与小分子的反应是可逆的。只有这样,才有可能在催化中使用这种FLP。我们是第一个用氨作为底物实现这一点的人,"Breher报告说。研究发现,FLP很容易以热中性方式与非水氨发生反应,并在室温下可逆地拆分氨的氮氢键。研究人员首次展示了基于主族元素的催化剂催化的NH3转移反应。"迄今为止,我们只转化了活化底物,没有转化不饱和碳氢化合物。但我们已经更接近我们梦想中的反应了,"布雷赫说。"我们预计,我们的首次原理验证将启动进一步的工作,将N-H活化氨用作一种易于获得且可持续的氮源。"参考文献FelixKrämer、JanParadies、IsraelFernández和FrankBreher于2023年9月28日发表在《自然-化学》上的文章:"一种能够在非水介质中活化和催化氨转移的结晶铝碳基双亲化合物"。DOI:10.1038/s41557-023-01340-9编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1403155.htm手机版:https://m.cnbeta.com.tw/view/1403155.htm

封面图片

环保新突破:单原子催化剂将二氧化碳转化为乙醇

环保新突破:单原子催化剂将二氧化碳转化为乙醇串联单原子电催化剂实现二氧化碳还原成乙醇。资料来源:DICP二氧化碳还原的挑战Cn(n≥2)液体产品因其高能量密度和易于储存而备受青睐。然而,由于对机理的理解有限,C-C偶联途径的操作仍是一项挑战。最近,由张涛教授和黄延强教授领导的研究小组在美国加利福尼亚大学洛杉矶分校进行了一项突破性研究。中国科学院大连化学物理研究所的张涛和黄延强教授领导的研究小组开发了一种锡基串联电催化剂(SnS2@Sn1-O3G),在-0.9VRHE和17.8mA/cm2的几何电流密度条件下,该催化剂可重复生成乙醇,法拉第效率高达82.5%。这项研究最近发表在科学杂志《自然-能源》上。研究人员通过在三维碳泡沫上进行SnBr2和硫脲的溶热反应,制造出SnS2@Sn1-O3G。这种电催化剂由SnS2纳米片和原子分散的Sn原子(Sn1-O3G)组成。机理研究表明,这种Sn1-O3G可分别吸附*CHO和*CO(OH)中间体,从而通过一种前所未有的甲酰基-碳酸氢盐偶联途径促进C-C键的形成。此外,通过使用同位素标记的反应物,研究人员追踪了在Sn1-O3G催化剂上形成的最终C2产物中C原子的形成路径。分析表明,产物中的甲基C来自甲酸,而亚甲基C来自二氧化碳。黄教授说:"我们的研究为乙醇合成中C-C键的形成提供了一个替代平台,并为操纵二氧化碳还原途径以获得所需的产品提供了一种策略。"...PC版:https://www.cnbeta.com.tw/articles/soft/1398721.htm手机版:https://m.cnbeta.com.tw/view/1398721.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人