新工具利用引力波窥视中子星内部

新工具利用引力波窥视中子星内部想象一下,将一颗质量为太阳两倍的恒星压扁到曼哈顿的大小,其结果将是一颗中子星--宇宙中任何地方发现的最密集的天体。事实上,它们的密度超过了在地球上自然发现的任何物质的几十万亿倍。PC版:https://www.cnbeta.com/articles/soft/1328411.htm手机版:https://m.cnbeta.com/view/1328411.htm

相关推荐

封面图片

我国天文学家利用郭守敬望远镜发现一颗宁静态中子星

我国天文学家利用郭守敬望远镜发现一颗宁静态中子星记者从中国科学院国家天文台获悉,基于国家重大科技基础设施郭守敬望远镜(LAMOST)时域巡天数据,LAMOST黑洞猎手计划研究团队发现了一颗距离地球大约1037光年、处于双星系统中的宁静态中子星。北京时间9月23日凌晨,国际科学期刊《自然·天文》发布了这项重要发现。PC版:https://www.cnbeta.com/articles/soft/1319913.htm手机版:https://m.cnbeta.com/view/1319913.htm

封面图片

天文学家通过分析引力波揭开中子星合并的热能秘密

天文学家通过分析引力波揭开中子星合并的热能秘密当两颗中子星相互绕行时,它们会在时空中释放出称为引力波的涟漪。这些涟漪会消耗轨道的能量,直到两颗恒星最终相撞并合并成一个天体。科学家们利用超级计算机模拟探索了不同核物质模型的行为如何影响这些合并后释放的引力波。他们发现,残余物的温度与这些引力波的频率之间存在很强的相关性。下一代探测器将能够区分这些模型。中子星合并后约5毫秒,从上往下看,两种不同模拟中子星合并(上、下)的密度(右)和温度(左)对比图。资料来源:宾夕法尼亚州立大学雅各布-菲尔兹(JacobFields)。科学家利用中子星作为实验室,在地球上无法探测的条件下研究核物质。他们利用目前的引力波探测器来观测中子星合并,了解超密集冷物质的行为方式。然而,这些探测器无法测量恒星合并后的信号。这个信号包含了热核物质的信息。未来的探测器将对这些信号更加敏感。由于它们还能区分不同的模型,这项研究的结果表明,未来的探测器将帮助科学家们建立更好的热核物质模型。这项研究使用THC_M1对中子星合并进行了研究。THC_M1是一种模拟中子星合并的计算机代码,它考虑到了恒星强大引力场造成的时空弯曲以及致密物质中的中微子过程。研究人员通过改变状态方程中的比热容来测试热效应对合并的影响,比热容用于测量中子星物质温度上升一度所需的能量。为了确保结果的稳健性,研究人员以两种分辨率进行了模拟。他们用更近似的中微子处理方法重复了更高分辨率的运行。参考文献《双中子星合并中的热效应》,作者:JacobFields、AviralPrakash、MatteoBreschi、DavidRadice、SebastianoBernuzzi和AndrédaSilvaSchneider,2023年7月31日,《天体物理学杂志通讯》。DOI:10.3847/2041-8213/ace5b2《低三动量传递时中子-碳相互作用中核效应的识别》,2016年2月17日前,《物理评论快报》。DOI:10.1103/PhysRevLett.116.071802这项工作使用了宾夕法尼亚州立大学国家能源研究科学计算中心、匹兹堡超级计算中心和计算与数据科学研究所提供的计算资源。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1404551.htm手机版:https://m.cnbeta.com.tw/view/1404551.htm

封面图片

科学家们探测到了中子星与潜在黑洞在质量缝隙中碰撞产生的引力波

科学家们探测到了中子星与潜在黑洞在质量缝隙中碰撞产生的引力波低质量间隙黑洞(深灰色表面)与中子星的凝聚与合并,颜色从深蓝色(每立方厘米60克)到白色(每立方厘米600千克)不等,凸显了中子星低密度物质的强烈变形。资料来源:I.Markin(波茨坦大学)、T.Dietrich(波茨坦大学和马克斯-普朗克引力物理研究所)、H.Pfeiffer、A.Buonanno(马克斯-普朗克引力物理研究所)。2023年5月,就在LIGO-Virgo-KAGRA第四次观测运行开始后不久,位于美国路易斯安那州的LIGO利文斯顿探测器观测到了一个引力波信号,该信号来自于很可能是一颗中子星与一个质量为太阳2.5至4.5倍的紧凑天体的碰撞。中子星和黑洞都是紧凑型天体,是大质量恒星爆炸后的致密残余物。这个名为GW230529的信号之所以引人入胜,是因为它的质量较大。它处于已知最重的中子星和最轻的黑洞之间可能存在的质量差距之内。引力波信号本身并不能揭示这个天体的性质。未来对类似事件的探测,特别是那些伴随着电磁辐射爆发的事件,可能有助于解决这个问题。不列颠哥伦比亚大学助理教授、LIGO科学合作组织副发言人杰斯-麦基弗博士(Dr.JessMcIver)说:"这次探测是我们从第四次LIGO-Virgo-KAGRA观测运行中获得的第一个令人兴奋的结果,它揭示了中子星和低质量黑洞之间的类似碰撞的发生率可能比我们之前想象的要高。"由于只有一个引力波探测器看到了这一事件,因此评估它是否真实变得更加困难。这幅图像显示了低质量间隙黑洞(深灰色表面)与中子星的合并,颜色从深橙色(每立方厘米100万吨)到白色(每立方厘米6亿吨)不等。引力波信号用一组正偏振的应变振幅值表示,颜色从深蓝色到青色不等。资料来源:I.Markin(波茨坦大学)、T.Dietrich(波茨坦大学和马克斯-普朗克引力物理研究所)、H.Pfeiffer、A.Buonanno(马克斯-普朗克引力物理研究所)。检测技术的进步ICG的研究软件工程师GarethCabournDavies博士开发了用于在单个探测器中搜索事件的工具。他说"通过在多个探测器中看到事件来证实事件是我们从噪声中分离信号的最强大工具之一。通过使用适当的背景噪声模型,即使在没有其他探测器支持我们所看到的情况下,我们也能判断出一个事件"。在2015年探测到引力波之前,恒星质量黑洞的质量主要是通过X射线观测发现的,而中子星的质量则是通过无线电观测发现的。由此得出的测量结果分为两个截然不同的范围,两者之间的差距约为太阳质量的2到5倍。多年来,有少量测量结果蚕食了这一质量差距,天体物理学家对此仍有很大争议。最新研究结果的影响对GW230529信号的分析表明,它来自两个紧凑型天体的合并,其中一个天体的质量是太阳质量的1.2到2.0倍,另一个天体的质量是太阳质量的两倍多一点。虽然引力波信号没有提供足够的信息来确定这些紧凑的天体是中子星还是黑洞,但看起来较轻的天体很可能是中子星,而较重的天体则是黑洞。LIGO-Virgo-KAGRA合作组织的科学家们确信,较重的天体就在质量差距之内。引力波观测现在已经提供了近200个紧凑天体质量的测量值。其中,只有一次并合可能涉及质量鸿沟紧凑天体--GW190814信号来自黑洞与一个紧凑天体的并合,该天体的质量超过了已知最重的中子星,而且可能在质量鸿沟之内。来自美国西北大学的SylviaBiscoveanu博士说:"虽然之前已经报道过引力波和电磁波中存在质量间隙天体的证据,但这个系统尤其令人兴奋,因为它是首次引力波探测到与中子星配对的质量间隙天体。对这一系统的观测对双星演化理论和紧凑天体合并的电磁对应理论都有重要意义"。正在进行和未来的观察第四次观测运行计划持续20个月,其中包括几个月的间歇期,以便对探测器进行维护并进行一些必要的改进。截至2024年1月16日,也就是当前的间歇期开始时,总共发现了81个重要的候选信号。GW230529是经过详细调查后公布的第一个候选信号。第四次观测运行将于2024年4月10日恢复,LIGOHanford、LIGOLivingston和Virgo探测器将同时运行。观测运行将持续到2025年2月,不会再有中断观测的计划。在观测运行继续进行的同时,LIGO-Virgo-KAGRA的研究人员正在分析运行前半段的数据,并检查已经确定的其余80个重要候选信号。到2025年2月第四次观测运行结束时,观测到的引力波信号总数将超过200个。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1427286.htm手机版:https://m.cnbeta.com.tw/view/1427286.htm

封面图片

不考虑距离 上周五探测到的最年轻中子星已经“37岁”了

不考虑距离上周五探测到的最年轻中子星已经“37岁”了超新星残余物SN1987A的合成图像,由X射线、光学和亚毫米波段组成。它是最年轻的中子星的家园X射线:NASA/CXC/SAO/PSU/D。Burrowsetal.;光学:NASA/STSCI;毫米波:NRAO/AUI/NSF:NRAO/AUI/NSF通常,当我们谈论天体的年龄时,它的年龄都在数百万年或数十亿年--所以发现比LadyGaga还年轻的天体感觉很奇怪。更奇怪的是,我们还能追溯到它诞生的具体日期--1987年2月23日,这意味着它上周五刚刚度过了自己的37岁生日。我们之所以能如此有把握地确定这个日期,是因为它的诞生是每隔几个世纪才会发生一次的事件的结果:一颗超新星距离地球很近,可以用肉眼观测到。SN1987A在1987年初的几个月里照亮了夜空,很快就被追踪到了大麦哲伦云,这是一个围绕银河运行的矮星系,距离银河大约16.8万光年。在那里,一颗蓝色超巨星似乎发生了坍缩和爆炸,应该留下了一个黑洞或一颗中子星。从那时起,天文学家们就一直在寻找这个天体的踪迹。2019年,卡迪夫大学的一个研究小组发现,云层中的一块特殊尘埃在某些波长的光线下比其他尘埃更亮一些。其他人也发现了类似的间接证据,但现在一项新的研究发现了迄今为止最直接的证据,证明那里生活着一颗婴儿中子星。与最近的许多发现一样,这一发现的关键在于詹姆斯-韦伯太空望远镜。天文学家用它的红外仪器分析了SN1987A云中气体和尘埃的光谱,发现其中的氩已经被电离了五次--基本上,这意味着原子的18个电子被剥夺了5个。这个过程需要非常高能的光子,这正是中子星存在的证据。研究报告的第一作者克莱斯-弗兰森(ClaesFransson)说:"要在喷出物中产生我们观测到的这些离子,很明显,在SN1987A残留物的中心必须有一个高能辐射源。在论文中,我们讨论了不同的可能性,发现只有几种情况是可能的,而所有这些情况都涉及到一颗新诞生的中子星"。所以我们要先祝贺SN-1987A37岁生日快乐!虽然人类到了这个年龄可能会准备迎接中年危机,但对于一颗中子星来说,它还只是第一次呼吸,它还可能闪耀数十亿年。当然,我们还是需要承认一下关于这个说法的注意识相,首先,从技术上讲,考虑到距离,这颗中子星的年龄是168037岁。但是,一旦开始这样调整时间,事情就会变得一团糟。根据我们在地球上的视角来描述事物是一种常见的用法,也要整洁得多,因为这是我们唯一的视角。其次,宇宙中不断有新的中子星诞生,因此从技术上讲,最年轻的中子星记录在SN1987A之后几秒钟就会被打破。但我们谈论的是人类直接探测到的最年轻的中子星,这让我们能够研究它们生命周期的早期。这项研究发表在《科学》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1420945.htm手机版:https://m.cnbeta.com.tw/view/1420945.htm

封面图片

云南天文台双中子星研究领域取得新进展

云南天文台双中子星研究领域取得新进展双中子星系统示意图。图片来源:云南天文台南京大学郭云浪博士与中国科学院云南天文台王博研究员等人,对形成双中子星系统的电子俘获超新星通道作了系统研究,给出了该通道下形成双中子星系统的初始参数空间,发现该参数空间中的氦星伴星质量和最小初始轨道周期,随着金属丰度的增加而增加。同时,通过考虑氦星伴星在塌缩成中子星时受到的反冲速度,研究了该通道下形成双中子星系统的特征。他们发现小于50公里每秒的低反冲速度,能够解释观测上大多数的双中子星系统特征。此外,通过考虑氦星表面的残留氢包层,该团队还发现中子星在双星演化过程中能够从伴星上吸积更多的物质,从而达到更快的转速。...PC版:https://www.cnbeta.com.tw/articles/soft/1433316.htm手机版:https://m.cnbeta.com.tw/view/1433316.htm

封面图片

NASA对强大的宇宙爆炸的观测揭示了超重中子星的情况

NASA对强大的宇宙爆炸的观测揭示了超重中子星的情况马里兰大学学院公园分校(UMCP)和位于马里兰州格林贝尔特的NASA戈达德太空飞行中心的研究员CeciliaChirenti解释说:"我们在NASA的NeilGehrelsSwift天文台、Fermi伽马射线太空望远镜和Compton伽马射线天文台探测到的700个短GRB中寻找这些信号,他在西雅图举行的美国天文学会第241次会议上介绍了这些发现。我们在康普顿于20世纪90年代初观测到的两个伽马射线暴中发现了这些伽马射线模式。"1月9日星期一,科学杂志《自然》上发表了一篇描述这些结果的论文,由Chirenti领导撰写。当一颗大质量恒星的核心耗尽燃料并崩溃时,就会形成中子星。过程中产生了的冲击波在超新星爆炸中吹走了恒星的其余部分。中子星通常将比我们的太阳更多的质量装入一个大约城市大小的球中,但是超过一定的质量,它们会坍缩成黑洞。康普顿数据和计算机模拟都显示,巨型中子星比已知的质量最大、测量最精确的中子星-J0740+6620多出20%,后者的质量几乎是太阳的2.1倍。超重中子星的体积也几乎是典型中子星的两倍,或者说是曼哈顿岛长度的两倍。宇航员在1991年4月从亚特兰蒂斯号航天飞机上部署康普顿伽马射线观测站时对其进行成像。资料来源:美国国家航空航天局/STS-37机组这些巨型中子星每分钟旋转近78000次--几乎是J1748-2446ad的两倍,后者是有记录以来最快的脉冲星。这种快速的旋转短暂地支持了这些天体的进一步坍缩,使它们能够存在短短的十分之几秒,之后它们继续形成黑洞,速度比眨眼还快。"我们知道短的GRB是在轨道上的中子星撞在一起时形成的,而且我们知道它们最终会坍缩成一个黑洞,但是对事件的确切顺序还不是很了解,"科尔-米勒说,他是UMCP的天文学教授,也是该论文的共同作者。"在某些时候,新生的黑洞会爆发出快速移动的粒子流,发出强烈的伽马射线闪光,这是能量最高的光的形式,我们想更多地了解它是如何发展的。"在这段动画中,一颗中子星(蓝色球体)在一个五颜六色的气体盘中心旋转,其中一些气体沿着磁场(蓝线)流动(蓝白弧线)到物体的表面。在这些系统的X射线中看到的准周期性振荡的一种解释是,在圆盘的内边缘附近形成了一个热点(白色椭圆形),它随着属性的变化而膨胀和收缩。由于这种不规则的轨道,热斑的发射在一定的频率范围内变化。资料来源:美国宇航局戈达德太空飞行中心概念图像实验室短的GRB通常闪耀不到两秒钟,但释放的能量相当于我们银河系中所有恒星一年所释放的能量。它们可以在10亿光年之外被探测到。合并的中子星也会产生引力波,即时空的涟漪,可以被越来越多的地面观测站探测到。对这些合并的计算机模拟显示,当中子星凝聚时,引力波表现出频率的突然快速跳跃,频率超过1000赫兹。这些信号对于现有的引力波观测站来说,速度太快,也太微弱,无法探测。但是Chirenti和她的团队推断,类似的信号可能出现在短GRB的伽马射线发射中。天文学家称这些信号为准周期振荡,或简称为QPO。与音叉的稳定铃声不同,QPO可以由几个接近的频率组成,这些频率随时间变化或消散。伽马射线和引力波QPOs都起源于两颗中子星凝聚时的物质漩涡中。虽然在Swift和Fermi暴中没有出现伽玛射线QPO,但康普顿的暴发和瞬态源实验(BATSE)在1991年7月11日和1993年11月1日记录的两个短的GRB符合这一要求。BATSE仪器的较大面积使它在寻找这些微弱的模式方面占了上风--这种明显的闪烁显示了超大型中子星的存在。研究小组认为,这些信号仅靠偶然发生的几率加起来不到三分之一。"这些结果非常重要,因为它们为未来引力波观测站对超大型中子星的测量奠定了基础,"没有参与这项工作的华盛顿乔治华盛顿大学物理系主任ChryssaKouveliotou说。到2030年代,引力波探测器将对千赫兹频率敏感,对超大中子星的短暂生命提供新的见解。在此之前,敏感的伽马射线观测和计算机模拟仍然是探索它们的唯一可用工具。...PC版:https://www.cnbeta.com.tw/articles/soft/1338831.htm手机版:https://m.cnbeta.com.tw/view/1338831.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人