不考虑距离 上周五探测到的最年轻中子星已经“37岁”了

不考虑距离上周五探测到的最年轻中子星已经“37岁”了超新星残余物SN1987A的合成图像,由X射线、光学和亚毫米波段组成。它是最年轻的中子星的家园X射线:NASA/CXC/SAO/PSU/D。Burrowsetal.;光学:NASA/STSCI;毫米波:NRAO/AUI/NSF:NRAO/AUI/NSF通常,当我们谈论天体的年龄时,它的年龄都在数百万年或数十亿年--所以发现比LadyGaga还年轻的天体感觉很奇怪。更奇怪的是,我们还能追溯到它诞生的具体日期--1987年2月23日,这意味着它上周五刚刚度过了自己的37岁生日。我们之所以能如此有把握地确定这个日期,是因为它的诞生是每隔几个世纪才会发生一次的事件的结果:一颗超新星距离地球很近,可以用肉眼观测到。SN1987A在1987年初的几个月里照亮了夜空,很快就被追踪到了大麦哲伦云,这是一个围绕银河运行的矮星系,距离银河大约16.8万光年。在那里,一颗蓝色超巨星似乎发生了坍缩和爆炸,应该留下了一个黑洞或一颗中子星。从那时起,天文学家们就一直在寻找这个天体的踪迹。2019年,卡迪夫大学的一个研究小组发现,云层中的一块特殊尘埃在某些波长的光线下比其他尘埃更亮一些。其他人也发现了类似的间接证据,但现在一项新的研究发现了迄今为止最直接的证据,证明那里生活着一颗婴儿中子星。与最近的许多发现一样,这一发现的关键在于詹姆斯-韦伯太空望远镜。天文学家用它的红外仪器分析了SN1987A云中气体和尘埃的光谱,发现其中的氩已经被电离了五次--基本上,这意味着原子的18个电子被剥夺了5个。这个过程需要非常高能的光子,这正是中子星存在的证据。研究报告的第一作者克莱斯-弗兰森(ClaesFransson)说:"要在喷出物中产生我们观测到的这些离子,很明显,在SN1987A残留物的中心必须有一个高能辐射源。在论文中,我们讨论了不同的可能性,发现只有几种情况是可能的,而所有这些情况都涉及到一颗新诞生的中子星"。所以我们要先祝贺SN-1987A37岁生日快乐!虽然人类到了这个年龄可能会准备迎接中年危机,但对于一颗中子星来说,它还只是第一次呼吸,它还可能闪耀数十亿年。当然,我们还是需要承认一下关于这个说法的注意识相,首先,从技术上讲,考虑到距离,这颗中子星的年龄是168037岁。但是,一旦开始这样调整时间,事情就会变得一团糟。根据我们在地球上的视角来描述事物是一种常见的用法,也要整洁得多,因为这是我们唯一的视角。其次,宇宙中不断有新的中子星诞生,因此从技术上讲,最年轻的中子星记录在SN1987A之后几秒钟就会被打破。但我们谈论的是人类直接探测到的最年轻的中子星,这让我们能够研究它们生命周期的早期。这项研究发表在《科学》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1420945.htm手机版:https://m.cnbeta.com.tw/view/1420945.htm

相关推荐

封面图片

新工具利用引力波窥视中子星内部

新工具利用引力波窥视中子星内部想象一下,将一颗质量为太阳两倍的恒星压扁到曼哈顿的大小,其结果将是一颗中子星--宇宙中任何地方发现的最密集的天体。事实上,它们的密度超过了在地球上自然发现的任何物质的几十万亿倍。PC版:https://www.cnbeta.com/articles/soft/1328411.htm手机版:https://m.cnbeta.com/view/1328411.htm

封面图片

科学家们探测到了中子星与潜在黑洞在质量缝隙中碰撞产生的引力波

科学家们探测到了中子星与潜在黑洞在质量缝隙中碰撞产生的引力波低质量间隙黑洞(深灰色表面)与中子星的凝聚与合并,颜色从深蓝色(每立方厘米60克)到白色(每立方厘米600千克)不等,凸显了中子星低密度物质的强烈变形。资料来源:I.Markin(波茨坦大学)、T.Dietrich(波茨坦大学和马克斯-普朗克引力物理研究所)、H.Pfeiffer、A.Buonanno(马克斯-普朗克引力物理研究所)。2023年5月,就在LIGO-Virgo-KAGRA第四次观测运行开始后不久,位于美国路易斯安那州的LIGO利文斯顿探测器观测到了一个引力波信号,该信号来自于很可能是一颗中子星与一个质量为太阳2.5至4.5倍的紧凑天体的碰撞。中子星和黑洞都是紧凑型天体,是大质量恒星爆炸后的致密残余物。这个名为GW230529的信号之所以引人入胜,是因为它的质量较大。它处于已知最重的中子星和最轻的黑洞之间可能存在的质量差距之内。引力波信号本身并不能揭示这个天体的性质。未来对类似事件的探测,特别是那些伴随着电磁辐射爆发的事件,可能有助于解决这个问题。不列颠哥伦比亚大学助理教授、LIGO科学合作组织副发言人杰斯-麦基弗博士(Dr.JessMcIver)说:"这次探测是我们从第四次LIGO-Virgo-KAGRA观测运行中获得的第一个令人兴奋的结果,它揭示了中子星和低质量黑洞之间的类似碰撞的发生率可能比我们之前想象的要高。"由于只有一个引力波探测器看到了这一事件,因此评估它是否真实变得更加困难。这幅图像显示了低质量间隙黑洞(深灰色表面)与中子星的合并,颜色从深橙色(每立方厘米100万吨)到白色(每立方厘米6亿吨)不等。引力波信号用一组正偏振的应变振幅值表示,颜色从深蓝色到青色不等。资料来源:I.Markin(波茨坦大学)、T.Dietrich(波茨坦大学和马克斯-普朗克引力物理研究所)、H.Pfeiffer、A.Buonanno(马克斯-普朗克引力物理研究所)。检测技术的进步ICG的研究软件工程师GarethCabournDavies博士开发了用于在单个探测器中搜索事件的工具。他说"通过在多个探测器中看到事件来证实事件是我们从噪声中分离信号的最强大工具之一。通过使用适当的背景噪声模型,即使在没有其他探测器支持我们所看到的情况下,我们也能判断出一个事件"。在2015年探测到引力波之前,恒星质量黑洞的质量主要是通过X射线观测发现的,而中子星的质量则是通过无线电观测发现的。由此得出的测量结果分为两个截然不同的范围,两者之间的差距约为太阳质量的2到5倍。多年来,有少量测量结果蚕食了这一质量差距,天体物理学家对此仍有很大争议。最新研究结果的影响对GW230529信号的分析表明,它来自两个紧凑型天体的合并,其中一个天体的质量是太阳质量的1.2到2.0倍,另一个天体的质量是太阳质量的两倍多一点。虽然引力波信号没有提供足够的信息来确定这些紧凑的天体是中子星还是黑洞,但看起来较轻的天体很可能是中子星,而较重的天体则是黑洞。LIGO-Virgo-KAGRA合作组织的科学家们确信,较重的天体就在质量差距之内。引力波观测现在已经提供了近200个紧凑天体质量的测量值。其中,只有一次并合可能涉及质量鸿沟紧凑天体--GW190814信号来自黑洞与一个紧凑天体的并合,该天体的质量超过了已知最重的中子星,而且可能在质量鸿沟之内。来自美国西北大学的SylviaBiscoveanu博士说:"虽然之前已经报道过引力波和电磁波中存在质量间隙天体的证据,但这个系统尤其令人兴奋,因为它是首次引力波探测到与中子星配对的质量间隙天体。对这一系统的观测对双星演化理论和紧凑天体合并的电磁对应理论都有重要意义"。正在进行和未来的观察第四次观测运行计划持续20个月,其中包括几个月的间歇期,以便对探测器进行维护并进行一些必要的改进。截至2024年1月16日,也就是当前的间歇期开始时,总共发现了81个重要的候选信号。GW230529是经过详细调查后公布的第一个候选信号。第四次观测运行将于2024年4月10日恢复,LIGOHanford、LIGOLivingston和Virgo探测器将同时运行。观测运行将持续到2025年2月,不会再有中断观测的计划。在观测运行继续进行的同时,LIGO-Virgo-KAGRA的研究人员正在分析运行前半段的数据,并检查已经确定的其余80个重要候选信号。到2025年2月第四次观测运行结束时,观测到的引力波信号总数将超过200个。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1427286.htm手机版:https://m.cnbeta.com.tw/view/1427286.htm

封面图片

我国天文学家利用郭守敬望远镜发现一颗宁静态中子星

我国天文学家利用郭守敬望远镜发现一颗宁静态中子星记者从中国科学院国家天文台获悉,基于国家重大科技基础设施郭守敬望远镜(LAMOST)时域巡天数据,LAMOST黑洞猎手计划研究团队发现了一颗距离地球大约1037光年、处于双星系统中的宁静态中子星。北京时间9月23日凌晨,国际科学期刊《自然·天文》发布了这项重要发现。PC版:https://www.cnbeta.com/articles/soft/1319913.htm手机版:https://m.cnbeta.com/view/1319913.htm

封面图片

天文学家发现存在仅几毫秒的巨型中子星

天文学家发现存在仅几毫秒的巨型中子星这个物体是什么取决于总质量。一颗中子星的最大质量刚刚超过两个太阳,然后它就会在自身的引力下坍塌,形成一个黑洞--所以如果两颗中子星的总质量低于这个极限,它们就会形成一颗新的中子星。如果质量更高,则碰撞将产生一个黑洞。在新的研究中,天文学家检测到两颗中子星之间的合并导致了黑洞。然而,他们还发现了一个耐人寻味的中间阶段的信号--只存在短短几毫秒的超重中子星。根据对中子星合并的计算机模拟,如果形成了超重中子星,在事件中抛出的引力波中出现一种被称为准周期振荡(QPO)的特定模式。虽然目前的观测站还没有敏感到可以在引力波中探测到这些,但新研究的团队确定,它们的指纹也会在伽马射线中显示出来。为了测试这个想法,天文学家们扫描了三个天文台在过去几十年中捕获的700个短伽马射线暴(GRB)的档案数据。果然,伽马射线QPOs出现在康普顿伽马射线天文台捕获的两个事件中--一个发生在1991年7月,另一个发生在1993年11月。研究小组计算出,被探测到的超重中子星的质量超过太阳的2.5倍,并且在坍缩成黑洞之前将持续不超过300毫秒的时间。它们的旋转速度也会非常快--如果它们持续那么久的话,几乎是每分钟78000转。相比之下,旋转速度最快的脉冲星的时钟低于43000转。该团队表示,未来的引力波探测器应该变得足够敏感,可以直接发现超重中子星的特征,这可能有助于提供关于这些超短命物体的新信息。该研究发表在《自然》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1338723.htm手机版:https://m.cnbeta.com.tw/view/1338723.htm

封面图片

NASA对强大的宇宙爆炸的观测揭示了超重中子星的情况

NASA对强大的宇宙爆炸的观测揭示了超重中子星的情况马里兰大学学院公园分校(UMCP)和位于马里兰州格林贝尔特的NASA戈达德太空飞行中心的研究员CeciliaChirenti解释说:"我们在NASA的NeilGehrelsSwift天文台、Fermi伽马射线太空望远镜和Compton伽马射线天文台探测到的700个短GRB中寻找这些信号,他在西雅图举行的美国天文学会第241次会议上介绍了这些发现。我们在康普顿于20世纪90年代初观测到的两个伽马射线暴中发现了这些伽马射线模式。"1月9日星期一,科学杂志《自然》上发表了一篇描述这些结果的论文,由Chirenti领导撰写。当一颗大质量恒星的核心耗尽燃料并崩溃时,就会形成中子星。过程中产生了的冲击波在超新星爆炸中吹走了恒星的其余部分。中子星通常将比我们的太阳更多的质量装入一个大约城市大小的球中,但是超过一定的质量,它们会坍缩成黑洞。康普顿数据和计算机模拟都显示,巨型中子星比已知的质量最大、测量最精确的中子星-J0740+6620多出20%,后者的质量几乎是太阳的2.1倍。超重中子星的体积也几乎是典型中子星的两倍,或者说是曼哈顿岛长度的两倍。宇航员在1991年4月从亚特兰蒂斯号航天飞机上部署康普顿伽马射线观测站时对其进行成像。资料来源:美国国家航空航天局/STS-37机组这些巨型中子星每分钟旋转近78000次--几乎是J1748-2446ad的两倍,后者是有记录以来最快的脉冲星。这种快速的旋转短暂地支持了这些天体的进一步坍缩,使它们能够存在短短的十分之几秒,之后它们继续形成黑洞,速度比眨眼还快。"我们知道短的GRB是在轨道上的中子星撞在一起时形成的,而且我们知道它们最终会坍缩成一个黑洞,但是对事件的确切顺序还不是很了解,"科尔-米勒说,他是UMCP的天文学教授,也是该论文的共同作者。"在某些时候,新生的黑洞会爆发出快速移动的粒子流,发出强烈的伽马射线闪光,这是能量最高的光的形式,我们想更多地了解它是如何发展的。"在这段动画中,一颗中子星(蓝色球体)在一个五颜六色的气体盘中心旋转,其中一些气体沿着磁场(蓝线)流动(蓝白弧线)到物体的表面。在这些系统的X射线中看到的准周期性振荡的一种解释是,在圆盘的内边缘附近形成了一个热点(白色椭圆形),它随着属性的变化而膨胀和收缩。由于这种不规则的轨道,热斑的发射在一定的频率范围内变化。资料来源:美国宇航局戈达德太空飞行中心概念图像实验室短的GRB通常闪耀不到两秒钟,但释放的能量相当于我们银河系中所有恒星一年所释放的能量。它们可以在10亿光年之外被探测到。合并的中子星也会产生引力波,即时空的涟漪,可以被越来越多的地面观测站探测到。对这些合并的计算机模拟显示,当中子星凝聚时,引力波表现出频率的突然快速跳跃,频率超过1000赫兹。这些信号对于现有的引力波观测站来说,速度太快,也太微弱,无法探测。但是Chirenti和她的团队推断,类似的信号可能出现在短GRB的伽马射线发射中。天文学家称这些信号为准周期振荡,或简称为QPO。与音叉的稳定铃声不同,QPO可以由几个接近的频率组成,这些频率随时间变化或消散。伽马射线和引力波QPOs都起源于两颗中子星凝聚时的物质漩涡中。虽然在Swift和Fermi暴中没有出现伽玛射线QPO,但康普顿的暴发和瞬态源实验(BATSE)在1991年7月11日和1993年11月1日记录的两个短的GRB符合这一要求。BATSE仪器的较大面积使它在寻找这些微弱的模式方面占了上风--这种明显的闪烁显示了超大型中子星的存在。研究小组认为,这些信号仅靠偶然发生的几率加起来不到三分之一。"这些结果非常重要,因为它们为未来引力波观测站对超大型中子星的测量奠定了基础,"没有参与这项工作的华盛顿乔治华盛顿大学物理系主任ChryssaKouveliotou说。到2030年代,引力波探测器将对千赫兹频率敏感,对超大中子星的短暂生命提供新的见解。在此之前,敏感的伽马射线观测和计算机模拟仍然是探索它们的唯一可用工具。...PC版:https://www.cnbeta.com.tw/articles/soft/1338831.htm手机版:https://m.cnbeta.com.tw/view/1338831.htm

封面图片

中子星碰撞事件GW170817帮助揭开暗物质之谜

中子星碰撞事件GW170817帮助揭开暗物质之谜两颗正在合并的中子星的艺术家插图。资料来源:NSF/LIGO/索诺玛州立大学/A.Simonnet类轴子粒子研究文理学院的物理学家布帕尔-德夫(BhupalDev)利用这次中子星合并的观测结果--天文学界将这一事件命名为GW170817--得出了关于类轴子粒子的新约束条件。这些假想粒子尚未被直接观测到,但它们出现在标准物理学模型的许多扩展中。轴子和类轴子粒子是构成科学家至今无法解释的宇宙中部分或全部"缺失"物质或暗物质的主要候选粒子。至少,这些相互作用微弱的粒子可以作为一种门户,将人类所知的可见部分与宇宙中未知的黑暗部分连接起来。《物理评论快报》(PhysicalReviewLetters)上这项研究的第一作者、该大学麦克唐纳空间科学中心(McDonnellCenterfortheSpaceSciences)的研究员德夫说:"我们有充分的理由怀疑,超越标准模型的新物理学可能就潜伏在不远处。"中子星合并的启示当两颗中子星合并时,会在短时间内形成一个高温、高密度的残余物。德夫说,这个残余物是产生奇异粒子的理想温床。残余物会在一秒钟内变得比单个恒星热得多,然后根据初始质量的不同,沉淀为一颗更大的中子星或黑洞。在这幅动画中,注定要灭亡的中子星呼啸着走向灭亡,它代表了在GW170817发生九天后观测到的现象。图片来源:美国宇航局戈达德太空飞行中心/CI实验室这些新粒子悄无声息地逃离了碰撞的碎片,在远离其源头的地方,可以衰变成已知的粒子,通常是光子。德夫和他的团队(包括华盛顿大学校友史蒂文-哈里斯(现为印第安纳大学NP3M研究员)以及让-弗朗索瓦-福尔廷、库弗-辛哈和张永超)发现,这些逃逸的粒子会产生独特的电磁信号,可以被美国宇航局的费米-LAT等伽马射线望远镜探测到。研究小组分析了这些电磁信号的光谱和时间信息,确定他们可以将这些信号与已知的天体物理背景区分开来。然后,他们利用费米-LAT关于GW170817的数据,推导出轴子-光子耦合作为轴子质量函数的新约束条件。这些天体物理约束与实验室实验(如轴子暗物质实验(ADMX))的约束相辅相成,后者探测的是轴子参数空间的不同区域。粒子物理学的未来前景未来,科学家们可以利用现有的伽马射线太空望远镜(如费米-LAT)或拟议中的伽马射线任务(如华盛顿大学领导的先进粒子-天体物理学望远镜(APT)),在中子星碰撞期间进行其他测量,帮助提高他们对类轴心粒子的理解。德夫说:"中子星合并等极端天体物理环境为我们寻找轴子等暗部门粒子提供了新的机会之窗,轴子可能是了解宇宙中缺少的85%物质的关键。"编译自/scitechdaily...PC版:https://www.cnbeta.com.tw/articles/soft/1423415.htm手机版:https://m.cnbeta.com.tw/view/1423415.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人