科学家将人类脑细胞植入大鼠体内并控制其行为

科学家将人类脑细胞植入大鼠体内并控制其行为斯坦福大学的研究人员将人类神经元移植到大鼠的大脑中,看到它们成熟为混合的大脑回路,然后用它们来影响啮齿动物的行为。这项工作标志着神经科学向前迈出了令人印象深刻的一步,并且可以看到大鼠大脑成为研究认知障碍的活实验室。PC版:https://www.cnbeta.com/articles/soft/1328675.htm手机版:https://m.cnbeta.com/view/1328675.htm

相关推荐

封面图片

科学家将人脑器官移植到成年大鼠体内 它们对视觉刺激有反应

科学家将人脑器官移植到成年大鼠体内它们对视觉刺激有反应移植了人脑器官的大鼠大脑的组织学图像几十年的研究表明,我们可以将单个人类和啮齿类动物的神经元移植到啮齿类动物的大脑中,而且最近,已经证明人类大脑器官可以与发育中的啮齿类动物大脑整合。然而,这些类器官移植是否能在功能上与受伤的成年大脑的视觉系统整合,还有待探索。资深作者、宾夕法尼亚大学神经外科助理教授H.IsaacChen说:"我们关注的不仅仅是移植单个细胞,而是实际移植组织。大脑器官有架构;它们有类似于大脑的结构。我们能够观察这个结构中的单个神经元,以更深入地了解移植的器官体的整合情况。"研究人员在实验室里将人类干细胞衍生的神经元培养了大约80天,然后将它们移植到视觉皮层受伤的成年老鼠的大脑中。在三个月内,移植的器官组织已经与宿主的大脑融为一体:血管化,大小和数量增长,发出神经元突起,并与宿主的神经元形成突触。研究小组利用荧光标记的病毒,沿着神经元之间的突触跳跃,检测并追踪类器官和宿主大鼠脑细胞之间的物理连接。Chen说:"通过将这些病毒示踪剂之一注入动物的眼睛,我们能够追踪视网膜下游的神经元连接。示踪剂一直到达了类器官。"接下来,研究人员使用电极探针来测量当动物被暴露在闪烁的灯光和交替的白条和黑条下时,类器官内单个神经元的活动。"我们看到,类器官内的大量神经元对特定方向的光线有反应,这给我们提供了证据,表明这些类器官神经元不仅能够与视觉系统整合,而且能够采用视觉皮层的非常具体的功能。"该研究小组对有机体在短短三个月内能够整合的程度感到惊讶。"陈说:"我们没有料到这么早看到这种程度的功能整合。已经有其他研究在研究单个细胞的移植,显示即使你将人类神经元移植到啮齿动物体内9或10个月后,它们仍然没有完全成熟。"Chen说:"神经组织有可能重建受伤的大脑区域。我们还没有解决所有问题,但这是非常坚实的第一步。现在,我们想了解如何将有机体用于大脑皮层的其他区域,而不仅仅是视觉皮层,而且我们想了解指导有机体神经元如何与大脑整合的规则,以便我们能够更好地控制这一过程,使其更快地发生。"...PC版:https://www.cnbeta.com.tw/articles/soft/1343623.htm手机版:https://m.cnbeta.com.tw/view/1343623.htm

封面图片

科学家计划用真正的脑细胞建造下一代超级计算机

科学家计划用真正的脑细胞建造下一代超级计算机研究人员正在用脑器官进行实验,它是脑细胞的三维培养物,模仿完全发育的器官的功能,作为生物计算硬件的处理中心。被称为"类器官智能",参与该项目的实验室培养的脑细胞器官能够保留核心认知功能,如记忆和学习。该团队指出,硅基计算机擅长处理数字,但它们在学习方面不如人脑好。此外,大脑的能效大大提高,而且组成的神经元可以在有限的空间内同时存储数量极大的信息。小规模的开始,雄心勃勃的目标大脑生物体的放大图像杰西-普罗特金/约翰霍普金斯大学目前,每个类器官包含大约5万个脑细胞,但为了达到理想的计算能力水平,该团队的目标是培养出包含大约1000万个脑细胞的类器官。同时,研究小组还在研究与这些器官体进行有效沟通的途径系统,以转达信息并了解这些细胞集群的想法。托马斯-哈通教授解释说:"这是一个灵活的外壳,上面密布着微小的电极,既能接收来自类器官的信号,又能向其传递信号。最终目标是开发刺激和记录工具,以控制有机体网络之间的互动。"就进展而言,该团队已经证明,一个扁平的脑细胞培养物能够学习和玩乒乓球游戏。整个"类器官智能"的概念仍处于起步阶段,但从事这项工作的团队相信,在不久的将来,生物计算将彻底改变神经疾病的药物测试研究等领域。...PC版:https://www.cnbeta.com.tw/articles/soft/1347051.htm手机版:https://m.cnbeta.com.tw/view/1347051.htm

封面图片

是什么让人类的智慧与众不同?科学家找出了解大脑的新窗口

是什么让人类的智慧与众不同?科学家找出了解大脑的新窗口研究人员发现,人类大脑增强的处理能力可能源于我们神经元结构和功能的差异。图像来源:昆士兰大脑研究所/斯蒂芬-威廉姆斯教授他们最近在《细胞报告》杂志上发表了他们的发现。昆士兰大学昆士兰大脑研究所(QBI)的斯蒂芬-威廉姆斯教授解释说,他的团队研究了人类新皮层锥体神经元嵌入其神经元网络的电特性。"为了研究人类神经元,我们从人类新皮层的小块组织中制备了活体组织片,这些组织片是从两家医院接受神经外科手术以缓解难治性癫痫或切除脑肿瘤的病人身上收集的,"威廉姆斯教授说。"我们通过对人类和啮齿类动物的锥体神经元的细胞体和细树突进行错综复杂的同步电记录来比较人类和啮齿类动物的电特性。我们的研究显示,人类和啮齿动物的新皮层锥体神经元具有共同的基本生物物理特性。例如,我们发现人类和啮齿类新皮层锥体神经元的树突都会产生树突钠尖峰,这表明整合一个神经元接收的成千上万个输入信号的机制是一致的。然而,我们发现人类新皮层锥体神经元的计算功能得到了极大的加强"。该研究的共同作者、QBI博士后HelenGooch博士表示,研究小组发现人类新皮层锥体神经元的树状结构,也就是携带电信号的树枝状延伸部分比其他哺乳动物,如啮齿类动物的树状结构更大、更复杂。Gooch博士说:"人类树突树的这种阐述伴随着在多个地点产生树突尖峰,这些尖峰积极地在神经元中扩散,以驱动每个神经元的输出信号。我们认为,这种分布式树突信息处理的增强因此可能是提高我们大脑整体处理能力的一个因素"。这种发现的转化为更好地理解人类大脑的电活动在疾病中如何受到干扰铺平了道路。母校医院神经科医生和共同作者LisaGillinder博士说:"作为临床研究人员,我们不仅对了解人类脑细胞的正常功能感到兴奋,而且通过这一领域的未来研究,我们还旨在更好地了解像癫痫这样的疾病所发生的功能变化,希望能改善治疗。"...PC版:https://www.cnbeta.com.tw/articles/soft/1333357.htm手机版:https://m.cnbeta.com.tw/view/1333357.htm

封面图片

科学家正尝试将水熊虫蛋白植入人类细胞

科学家正尝试将水熊虫蛋白植入人类细胞怀俄明大学的研究人员领导的一项新研究发现,在人体细胞中表达关键的水熊虫蛋白会减缓新陈代谢,这为了解这些难以被杀死的无脊椎动物如何在最极端的条件下生存提供了重要的启示。研究小组重点研究了一种名为CAHSD的特殊蛋白质,众所周知,这种蛋白质可以防止极端干燥(脱水)。通过各种方法,研究人员展示了CAHSD在受到压力时如何转变成凝胶状,从而保护分子并防止干燥。研究人员在发表的论文中写道:"这项研究深入揭示了水熊虫以及其他潜在的耐干燥生物是如何利用生物分子凝结在干燥环境中存活下来的。除了应激耐受性,我们的研究结果还提供了一条途径,可以围绕诱导细胞甚至整个生物体的生物稳态来开发技术,从而延缓衰老并增强储存和稳定性。"迟发型生物已经证明,它们可以在酷热和严寒的环境中生存,可以在对人类致命的高辐射环境中生存,也可以在长期缺水的环境中生存--水通常是生命的必需品。它们甚至可以在太空中生存。先前的研究揭示了水熊虫历经数亿年积累起来的令人印象深刻的生存技巧。从根本上说,在CAHSD的帮助下,它们非常善于减缓生命进程,而这对人类细胞也可能有用。怀俄明大学的分子生物学家西尔维娅-桑切斯-马丁内斯说:"令人惊讶的是,当我们将这些蛋白质引入人体细胞时,它们会凝胶化,减缓新陈代谢,就像在水熊虫体内一样。当把含有这些蛋白质的人类细胞置于生物静止状态时,它们会变得更能抵抗压力,从而把水熊虫的一些能力赋予人类细胞。"在未来的某一天,我们也许能找到方法,将这种惊人的水熊虫复原力传递给我们自己的细胞和组织,从而有可能减缓生物衰老,并有助于在低温条件下安全储存细胞的治疗,例如器官移植。要利用这种能力的转移,还需要大量的进一步研究,目前已经在进行一些研究,探讨水熊虫蛋白能否稳定用于治疗遗传疾病的重要血液制品。早期迹象表明,在多个领域,包括当环境压力存在时,这种蛋白质会被智能地激活,而当环境压力不存在时,这种蛋白质又会失活。怀俄明大学分子生物学家托马斯-布斯比(ThomasBoothby)说:"当压力得到缓解时,水熊虫凝胶就会溶解,人体细胞就会恢复正常的新陈代谢。"这项研究发表在《蛋白质科学》上。...PC版:https://www.cnbeta.com.tw/articles/soft/1425628.htm手机版:https://m.cnbeta.com.tw/view/1425628.htm

封面图片

科学家发现所有哺乳动物脑细胞共有的学习基因的新功能

科学家发现所有哺乳动物脑细胞共有的学习基因的新功能对小鼠的研究可以为治疗SYNGAP1基因突变儿童的大脑发育障碍提供指导。约翰斯-霍普金斯大学医学院的神经科学家发现了SYNGAP1基因以前未知的功能,该基因的DNA序列控制着包括小鼠和人类在内的哺乳动物的记忆和学习。这一发现最近发表在《科学》(Science)杂志上,它可能会影响针对SYNGAP1突变儿童的疗法的开发,这些儿童患有一系列以智力障碍、类似自闭症的行为和癫痫为特征的神经发育障碍。一般来说,SYNGAP1和其他基因通过制造调节突触强度(脑细胞之间的连接)的蛋白质来控制学习和记忆。研究人员说,以前人们认为SYNGAP1基因只通过编码一种蛋白来发挥作用,这种蛋白的作用类似于酶,能调节导致突触强度变化的化学反应。现在,科学家们说,他们在小鼠身上进行的实验表明,该基因编码的蛋白质的功能可能更像一种所谓的支架蛋白,它能调节突触的可塑性,或突触随着时间的推移变得更强或更弱,而与酶的活性无关。他们说,SynGAP蛋白似乎扮演着交通管理者的角色,指挥着大脑蛋白质在突触的位置和内容。探索与实验约翰霍普金斯大学医学院神经科学和心理与脑科学布隆伯格特聘教授、所罗门-H-斯奈德神经科学系主任理查德-胡加尼尔博士和他的团队于1998年首次分离出SYNGAP1基因。胡加尼尔说,SynGAP蛋白在突触中的含量非常丰富,长期以来,人们一直认为SynGAP的主要作用是引发调节突触强度的酶化学反应。但是,在研究SynGAP蛋白的过程中,休加尼尔等人开始发现,当SynGAP蛋白与主要的突触支架蛋白PSD-95发生作用时,它们具有一种奇怪的特性。它们会变成液滴,对于酶蛋白来说,这种结构转变是不寻常的。显示SynGAP(绿色)与突触处PSD-95结合的神经元。图片来源:约翰霍普金斯大学医学院YoichiAraki和RickHuganir为了弄清并理解SynGAP奇特的液体转变的目的,胡加尼尔、神经科学导师荒木洋一和胡加尼尔在约翰霍普金斯大学的研究团队设计了神经元实验,他们在SYNGAP1基因的所谓GAP结构域中插入突变,从而在不影响其结构的情况下消除SynGAP的酶功能。约翰-霍普金斯大学的研究小组发现,即使没有酶的活性,突触也能正常工作,这表明结构特性本身对SynGAP的功能非常重要。研究小组接下来在小鼠身上进行了相同类型的基因工程,以去除SynGAP的酶功能,结果发现类似:突触表现正常,突触可塑性没有问题,小鼠的学习和记忆行为也没有困难。研究小组称,这表明SynGAP的结构特性足以保证正常的认知行为。为了了解SynGAP的结构是如何调节突触的,科学家们对突触进行了更仔细的分析,发现SynGAP蛋白与AMPA受体/TARP复合物(加强突触的神经递质蛋白束)和PSD-95支架蛋白的结合存在竞争。实验表明,在静止状态下,SynGAP与PSD-95紧密结合,不允许它与突触中的任何其他蛋白质结合。然而,在突触可塑性、学习和记忆过程中,SynGAP蛋白会断开与PSD-95的连接,离开突触,并允许神经递质受体复合物与PSD-95结合。这使得突触变得更强,增加了脑细胞之间的传递。Huganir说:"这一系列过程并没有SynGAP典型的催化活性。相反,SynGAP在与PSD-95结合时会将其束缚住,但当SynGAP离开这个突触时,PSD-95就会开放,与AMPA受体/TARP复合物结合。"在SynGAP基因突变的儿童中,突触中的SynGAP蛋白数量减少了一半左右。由于SynGAP蛋白的数量减少,PSD-95可能会更多地与AMPA受体/TARP复合物结合,从而改变神经元的连接,导致脑细胞活动增加,这就是SynGAP突变儿童常见的癫痫发作的特征。Huganir说,SynGAP的两种功能--酶和支架蛋白的"交通管理"作用--现在可能对寻找SynGAP相关神经发育障碍的治疗方法非常重要。他们的研究还表明,仅针对SynGAP的一种功能可能不足以产生重大影响。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1425196.htm手机版:https://m.cnbeta.com.tw/view/1425196.htm

封面图片

研究:科学家发现脑细胞的不规则产生可能会导致自闭症

研究:科学家发现脑细胞的不规则产生可能会导致自闭症罗格斯大学的研究人员通过研究自闭症谱系障碍(ASD)患者的脑干细胞发现了非常早期的大脑发育异常的证据,而这可能是导致神经精神状况的原因。该结果证实了科学家们长期以来一直持有的一个理论。ASD在胎儿发育的早期就开始了,当时脑干细胞正在分裂,从而创造出一个功能性大脑的关键元素。资料图罗格斯大学(RutgersUniversity)的研究人员研究了ASD患者的脑干细胞--也被称为神经前体细胞(NPC),另外还在《StemCellReports》上发表了他们的发现。他们发现永久性脑细胞的数量被NPC过度生产或生产不足。据悉,NPC负责制造三种主要类型的脑细胞:神经元、少突胶质细胞和星形胶质细胞。“我们从所有样本中研究的NPCs显示出异常增殖,要么‘太少’,要么‘太多’,这表明对脑细胞增殖的控制不佳是ASD致病的一个重要基础,”罗格斯大学罗伯特-伍德-约翰逊医学院的神经科学和细胞生物学及儿科教授、该论文作者EmanuelDicicco-Bloom说道,“这项研究在细胞水平上表明,增殖的改变确实是该疾病的一个可能机制,并支持从以前的研究中得到的影响。”该研究专注于五个自闭症患者的干细胞活动,其中包括那些没有已知遗传原因的特发性自闭症患者及其他具有遗传定义的16p11.2缺失的人。那些患有巨头症的人,其NPC产生了过多的脑细胞。其余两名没有巨头症的患者,他们的NPC产生的脑细胞则太少。ASD是一种神经发育障碍,其特点是社会交往和沟通困难并存在重复和限制性行为。大多数ASD病例是特发性的。约15%到20%的ASD病例是由特定的基因突变引起的。NPC是在产前形成的,时间从第一胎的末尾延伸到第二胎,约是人类胎儿40周妊娠期的第8到24周。DiCicco-Bloom表示:“我们实际上已经测量了人类神经前体的增殖并大大推进了我们的理解。将来,一旦我们复制了这些研究并进行了扩展,我们也可能将这些知识作为生物标志物,而这可能是何时引入治疗的信号或确定用药物瞄准的信号通路。”...PC版:https://www.cnbeta.com/articles/soft/1307039.htm手机版:https://m.cnbeta.com/view/1307039.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人