科学家将人脑器官移植到成年大鼠体内 它们对视觉刺激有反应

科学家将人脑器官移植到成年大鼠体内它们对视觉刺激有反应移植了人脑器官的大鼠大脑的组织学图像几十年的研究表明,我们可以将单个人类和啮齿类动物的神经元移植到啮齿类动物的大脑中,而且最近,已经证明人类大脑器官可以与发育中的啮齿类动物大脑整合。然而,这些类器官移植是否能在功能上与受伤的成年大脑的视觉系统整合,还有待探索。资深作者、宾夕法尼亚大学神经外科助理教授H.IsaacChen说:"我们关注的不仅仅是移植单个细胞,而是实际移植组织。大脑器官有架构;它们有类似于大脑的结构。我们能够观察这个结构中的单个神经元,以更深入地了解移植的器官体的整合情况。"研究人员在实验室里将人类干细胞衍生的神经元培养了大约80天,然后将它们移植到视觉皮层受伤的成年老鼠的大脑中。在三个月内,移植的器官组织已经与宿主的大脑融为一体:血管化,大小和数量增长,发出神经元突起,并与宿主的神经元形成突触。研究小组利用荧光标记的病毒,沿着神经元之间的突触跳跃,检测并追踪类器官和宿主大鼠脑细胞之间的物理连接。Chen说:"通过将这些病毒示踪剂之一注入动物的眼睛,我们能够追踪视网膜下游的神经元连接。示踪剂一直到达了类器官。"接下来,研究人员使用电极探针来测量当动物被暴露在闪烁的灯光和交替的白条和黑条下时,类器官内单个神经元的活动。"我们看到,类器官内的大量神经元对特定方向的光线有反应,这给我们提供了证据,表明这些类器官神经元不仅能够与视觉系统整合,而且能够采用视觉皮层的非常具体的功能。"该研究小组对有机体在短短三个月内能够整合的程度感到惊讶。"陈说:"我们没有料到这么早看到这种程度的功能整合。已经有其他研究在研究单个细胞的移植,显示即使你将人类神经元移植到啮齿动物体内9或10个月后,它们仍然没有完全成熟。"Chen说:"神经组织有可能重建受伤的大脑区域。我们还没有解决所有问题,但这是非常坚实的第一步。现在,我们想了解如何将有机体用于大脑皮层的其他区域,而不仅仅是视觉皮层,而且我们想了解指导有机体神经元如何与大脑整合的规则,以便我们能够更好地控制这一过程,使其更快地发生。"...PC版:https://www.cnbeta.com.tw/articles/soft/1343623.htm手机版:https://m.cnbeta.com.tw/view/1343623.htm

相关推荐

封面图片

研究人员首次实现植入小鼠体内的人脑器官对视觉刺激的反应

研究人员首次实现植入小鼠体内的人脑器官对视觉刺激的反应这项研究最近发表在《自然通讯》杂志上,由加州大学圣地亚哥分校电子和计算机工程系的研究员DuyguKuzum领导,合作者包括来自波士顿大学AnnaDevor实验室、加州大学圣地亚哥分校AlyssonR.Muotri实验室和索尔克研究所FredH.Gage实验室的研究人员。加州大学圣地亚哥分校的博士生麦迪逊-威尔逊是这项研究的第一作者,该研究显示,植入小鼠体内的人脑器官已经与动物的大脑皮层建立了功能连接,并对外部感官刺激做出了反应。资料来源:DavidBaillot/加州大学圣地亚哥分校人类皮层器官来自于人类诱导多能干细胞,这些细胞通常来自于皮肤细胞。这些大脑器官最近成为研究人类大脑发育以及一系列神经系统疾病的颇有前景的模型。但直到现在,还没有一个研究小组能够证明植入小鼠皮层的人脑器官能够拥有相同的功能特性,并以相同的方式对刺激作出反应。这是因为用于记录大脑功能的技术是有限的,通常无法记录持续时间只有几毫秒的活动。研究人员在有机体上方的电极通道中观察到电活动,显示有机体对刺激的反应与周围组织相同。资料来源:DavidBaillot论文第一作者、加州大学圣地亚哥分校Kuzum研究小组的博士生MadisonWilson说:"没有其他研究能够同时进行光学和电学记录。我们的实验显示,视觉刺激在器官中唤起电生理反应,与周围皮层的反应相匹配。"研究人员希望这种结合创新的神经记录技术来研究有机体将成为一个独特的平台,以全面评估有机体作为大脑发育和疾病的模型,并研究它们作为神经修复体来恢复失去的、退化的或受损的大脑区域的功能。研究人员能够检测和成像移植的人脑器官和小鼠大脑之间的边界。资料来源:麦迪逊-威尔逊/圣地亚哥大学Kuzum说:"这个实验装置为调查人类神经网络层面的功能障碍开辟了前所未有的机会,这些功能障碍是发育性大脑疾病的基础。"Kuzum的实验室在2014年首次开发了透明石墨烯电极,此后一直在推进这项技术。研究人员使用铂金纳米粒子将石墨烯电极的阻抗降低了100倍,同时保持其透明。低阻抗的石墨烯电极能够在宏观和单细胞水平上记录和成像神经元活动。通过将这些电极阵列放在移植的有机体上,研究人员能够实时记录植入的有机体和周围宿主皮层的神经活动。利用双光子成像,他们还观察到小鼠血管长入类器官,为植入物提供必要的营养和氧气。研究人员对植入类器官的小鼠施加了视觉刺激--光学白光LED,同时小鼠处于双光子显微镜下。他们在有机体上方的电极通道中观察到电活动,表明有机体对刺激的反应与周围组织相同。电活动从最接近视觉皮层的区域通过功能连接传播到植入的有机体区域。此外,他们的低噪音透明石墨烯电极技术能够从类器官和周围的小鼠皮层中电记录尖峰活动。石墨烯记录显示,伽马振荡的功率增加,以及来自类器官的尖峰与小鼠视觉皮层的慢速振荡的相位锁定。这些发现表明,在植入三周后,有机体已经与周围的大脑皮层组织建立了突触连接,并接受了来自小鼠大脑的功能输入。研究人员将这些慢性多模态实验持续了11周,并显示植入的人脑器官与宿主小鼠的大脑皮层在功能和形态上的整合。接下来的步骤包括涉及神经疾病模型的更长时间的实验,以及在实验装置中加入钙成像,以可视化类器官神经元的尖峰活动。其他方法也可用于追踪类器官和小鼠皮层之间的轴突。Kuzum说:"我们设想,沿着这条路走下去,这种干细胞和神经记录技术的组合将被用于在生理条件下建立疾病模型;检查病人特定器官的候选治疗方法;以及评估器官恢复特定损失、退化或受损脑区的潜力。"...PC版:https://www.cnbeta.com.tw/articles/soft/1342413.htm手机版:https://m.cnbeta.com.tw/view/1342413.htm

封面图片

科学家发现灵长类动物和其他动物之间大脑的关键差异

科学家发现灵长类动物和其他动物之间大脑的关键差异一个多国研究小组现在已经更好了解物种之间大脑皮层神经元架构的差异,这要归功于高分辨率显微镜。波鸿鲁尔大学发育神经生物学研究小组的研究人员在PetraWahle教授的领导下,已经证明灵长类动物和非灵长类动物在其结构上一个重要差异:轴突的起源,这是负责传输被称为动作电位电信号的过程。这些结果最近发表在《eLife》杂志上。研究小组研究了各种动物,包括啮齿类动物(小鼠、大鼠)、有蹄类动物(猪)、食肉动物(猫、雪貂),以及动物学灵长类的猕猴和人类。科学家们通过使用五种不同的染色技术和对超过34,000个神经元的评估得出结论,非灵长类动物和灵长类动物之间存在着物种差异。与非灵长类动物的兴奋性锥体神经元相比,灵长类动物大脑皮层外层II和III的兴奋性锥体神经元上携带轴突的树突明显较少。此外,对于抑制性中间神经元,在猫和人类物种之间发现了携带轴突的树突细胞百分比方面的巨大差异。在比较具有初级感觉和高级大脑功能的猕猴皮层区域时,没有观察到定量差异。研究人员表示,高分辨率显微镜在研究中特别重要,这使得检测轴突起源可以在微米级准确跟踪,这在传统显微镜下有时并不那么容易。通常,一个神经元将到达树突的兴奋性输入与抑制性输入进行整合,这一过程被称为体突整合。然后,神经元决定输入是否足够强大和重要,以通过动作电位传送到其他神经元和脑区。携带轴突的树突被认为是有特权的,因为这些树突的去极化输入能够直接唤起动作电位,而无需参与体细胞整合和体细胞抑制。为什么会演变出这种物种差异,以及它对灵长类动物的新皮层信息处理可能具有的潜在优势,目前尚不清楚。PC版:https://www.cnbeta.com/articles/soft/1301255.htm手机版:https://m.cnbeta.com/view/1301255.htm

封面图片

科学家将人类脑细胞植入大鼠体内并控制其行为

科学家将人类脑细胞植入大鼠体内并控制其行为斯坦福大学的研究人员将人类神经元移植到大鼠的大脑中,看到它们成熟为混合的大脑回路,然后用它们来影响啮齿动物的行为。这项工作标志着神经科学向前迈出了令人印象深刻的一步,并且可以看到大鼠大脑成为研究认知障碍的活实验室。PC版:https://www.cnbeta.com/articles/soft/1328675.htm手机版:https://m.cnbeta.com/view/1328675.htm

封面图片

植入小鼠体内的迷你人脑对动物看到的光产生反应

植入小鼠体内的迷你人脑对动物看到的光产生反应由于它们是真实事物的更自然、更立体的代表,器官模型可以用来模拟发育、疾病和药物反应,比在盘子里使用细胞的平面培养物要精确得多。多年来,科学家们已经成功地培育出迷你版的大脑、心脏、肺、肝脏、肾脏、胃、眼睛、胰腺,甚至是血管和毛囊。去年10月,斯坦福大学的一个团队首次将人类大脑器官植入老鼠体内,并发现人类细胞与小鼠的神经元形成连接。在新的研究中,加利福尼亚大学(UC)圣地亚哥分校的科学家们在这项工作的基础上表明,植入小鼠体内的人脑器官能够对刺激作出反应。在这之前这一点很难实现,因为所涉及的大脑活动只持续几毫秒,现有技术很难捕捉到。因此,加州大学圣地亚哥分校的团队结合两种实验技术对脑细胞进行成像。首先,他们将一排透明的石墨烯电极放在移植的器官上。这些装置使研究小组能够记录发生在人类脑细胞和周围小鼠脑组织中的神经电活动。接下来,他们使用双光子显微镜对大脑进行成像,发现小鼠的血管已经长到了有机体中,为它们提供了氧气和营养物质。石墨烯电极使科学家能够测量人脑器官和周围小鼠脑组织的电活动植入三周后,研究人员进行了实验,他们在小鼠面前闪烁白光,并观察不同脑细胞的反应。结果显示,石墨烯电极显示出明显的电尖峰迹象,从视觉皮层传播。这表明人类有机体已经与周围的小鼠脑组织建立了突触连接。在11周的后续实验中,研究小组显示,这些植入物在功能上越来越多地与宿主结合。该研究的第一作者麦迪逊-威尔逊说:"没有其他研究能够同时进行光学和电学记录。我们的实验显示,视觉刺激唤起了器官中的电生理反应,与周围皮层的反应相匹配"。在未来的工作中,该团队计划用这种技术来模拟神经系统疾病的发展,这最终可能有助于释放新的潜在治疗方法。该研究发表在《自然通讯》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1337283.htm手机版:https://m.cnbeta.com.tw/view/1337283.htm

封面图片

科学家从章鱼视觉系统的地图中发现大脑进化的新线索

科学家从章鱼视觉系统的地图中发现大脑进化的新线索章鱼大脑的荧光图像显示不同的不同类型的神经元的位置信用:Niell实验室他们在一篇新的科学论文中列出了章鱼视觉系统的详细地图。在该地图中,他们对大脑中专门用于视觉的部分的不同类型的神经元进行了分类。这一结果对其他神经科学家来说是一个宝贵的资源,提供了可以指导未来实验的细节。此外,它还可以让我们更广泛地了解大脑和视觉系统的进化情况。该团队今天(10月31日)在《当代生物学》杂志上报告了他们的发现。CrisNiell在俄亥俄大学的实验室研究视觉,主要是在小鼠身上。但是几年前,博士后JuditPungor给实验室带来了一个新物种--加州双点章鱼。尽管传统上它并不被用作实验室的研究对象,但这种头足类动物很快就引起了俄亥俄大学神经科学家的兴趣。与小鼠不同,小鼠并不以拥有良好的视觉而闻名,"章鱼有一个惊人的视觉系统,它们的大脑中有很大一部分专门用于视觉处理,"Niell说。"它们的眼睛与人类的眼睛非常相似,但在那之后,大脑就完全不同了。"章鱼和人类的最后一个共同祖先是在5亿年前,此后,这些物种在非常不同的环境中进化。因此,科学家们不知道视觉系统的相似之处是否超出了眼睛的范围,或者章鱼是否反而使用了完全不同种类的神经元和大脑回路来实现类似的结果。"看到章鱼的眼睛如何与我们的眼睛相似地进化,思考章鱼的视觉系统如何能够成为更普遍地理解大脑复杂性的模型是一件很酷的事情,"Niell实验室的研究生和该论文的第一作者MeaSongco-Casey说。"例如,是否有基本的细胞类型是这种非常聪明、复杂的大脑所需要的?"在这里,研究小组使用遗传技术来确定章鱼视叶中不同类型的神经元,这是大脑中专门用于视觉的部分。他们挑选出六大类神经元,根据它们发出的化学信号进行区分。观察这些神经元中某些基因的活动,然后发现更多的亚型,为更具体的作用提供了线索。在某些情况下,科学家们精确地指出了特定的神经元群在独特的空间排列中--例如,在视叶周围的一圈神经元都使用一种叫做辛胺的分子发出信号。果蝇在活动时使用这种类似于肾上腺素的分子来增加视觉处理。因此,它也许在章鱼中也有类似的作用。"现在我们知道有这种非常特殊的细胞类型,我们可以开始进入并弄清楚它的作用,数据中大约有三分之一的神经元看起来还没有完全发育。章鱼的大脑在动物的生命周期中不断成长并增加新的神经元。这些不成熟的神经元,尚未整合到大脑电路中,是大脑处于扩张过程中的一个标志!"。然而,该地图并没有像研究人员所想的那样,显示出明显从人类或其他哺乳动物大脑转移过来的神经元组。这些神经元并没有相互映射--它们使用不同的神经递质。但是,也许它们正在进行相同种类的计算,只是方式不同。深入挖掘还需要更好地掌握头足类动物的遗传学。参与这项研究的安德鲁-克恩实验室的研究生加比-科芬(GabbyCoffing)说,由于章鱼在传统上没有被用作实验动物,许多用于果蝇或小鼠的精确遗传操作的工具还不存在于章鱼。有很多基因我们不知道它们的功能是什么,因为我们还没有对很多头足类动物的基因组进行排序。如果没有相关物种的基因数据作为比较点,就很难推断出特定神经元的功能。研究团队正在迎接这一挑战。他们现在正在努力绘制章鱼大脑视叶以外的地图,看看他们在这项研究中关注的一些基因如何在大脑的其他地方出现。他们还在记录视叶中的神经元,以确定它们如何处理视觉场景。随着时间的推移,他们的研究可能会使这些神秘的海洋动物不再那么神秘--同时也为我们自己的进化提供一点启示。...PC版:https://www.cnbeta.com.tw/articles/soft/1331421.htm手机版:https://m.cnbeta.com.tw/view/1331421.htm

封面图片

是什么让人类的智慧与众不同?科学家找出了解大脑的新窗口

是什么让人类的智慧与众不同?科学家找出了解大脑的新窗口研究人员发现,人类大脑增强的处理能力可能源于我们神经元结构和功能的差异。图像来源:昆士兰大脑研究所/斯蒂芬-威廉姆斯教授他们最近在《细胞报告》杂志上发表了他们的发现。昆士兰大学昆士兰大脑研究所(QBI)的斯蒂芬-威廉姆斯教授解释说,他的团队研究了人类新皮层锥体神经元嵌入其神经元网络的电特性。"为了研究人类神经元,我们从人类新皮层的小块组织中制备了活体组织片,这些组织片是从两家医院接受神经外科手术以缓解难治性癫痫或切除脑肿瘤的病人身上收集的,"威廉姆斯教授说。"我们通过对人类和啮齿类动物的锥体神经元的细胞体和细树突进行错综复杂的同步电记录来比较人类和啮齿类动物的电特性。我们的研究显示,人类和啮齿动物的新皮层锥体神经元具有共同的基本生物物理特性。例如,我们发现人类和啮齿类新皮层锥体神经元的树突都会产生树突钠尖峰,这表明整合一个神经元接收的成千上万个输入信号的机制是一致的。然而,我们发现人类新皮层锥体神经元的计算功能得到了极大的加强"。该研究的共同作者、QBI博士后HelenGooch博士表示,研究小组发现人类新皮层锥体神经元的树状结构,也就是携带电信号的树枝状延伸部分比其他哺乳动物,如啮齿类动物的树状结构更大、更复杂。Gooch博士说:"人类树突树的这种阐述伴随着在多个地点产生树突尖峰,这些尖峰积极地在神经元中扩散,以驱动每个神经元的输出信号。我们认为,这种分布式树突信息处理的增强因此可能是提高我们大脑整体处理能力的一个因素"。这种发现的转化为更好地理解人类大脑的电活动在疾病中如何受到干扰铺平了道路。母校医院神经科医生和共同作者LisaGillinder博士说:"作为临床研究人员,我们不仅对了解人类脑细胞的正常功能感到兴奋,而且通过这一领域的未来研究,我们还旨在更好地了解像癫痫这样的疾病所发生的功能变化,希望能改善治疗。"...PC版:https://www.cnbeta.com.tw/articles/soft/1333357.htm手机版:https://m.cnbeta.com.tw/view/1333357.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人