一个地下海洋?科学家发现地球深处有水

一个地下海洋?科学家发现地球深处有水地球上层和下层之间的边界层被称为地幔过渡带。它位于地表下410至660公里之间。橄榄绿色的矿物橄榄石约占地球上层地幔的70%,在过渡区高达23000bar的极端压力下,其晶体结构发生变化。在大约410公里的深度,在过渡带的上边缘,它变成了密度较大的瓦茨利石,而在520公里的深度,它转变为密度更大的林伍德石。PC版:https://www.cnbeta.com/articles/soft/1328979.htm手机版:https://m.cnbeta.com/view/1328979.htm

相关推荐

封面图片

科学家发现地球最大大陆裂缝异常变形的源头

科学家发现地球最大大陆裂缝异常变形的源头萨拉-斯坦普斯(D.SarahStamps)领导的研究利用三维热力学建模发现,非洲超级隆起--一个巨大的地幔上涌--导致了在东非大裂谷系统中观察到的不寻常的裂谷平行变形。这增加了围绕驱动断裂的主要力量的争论的复杂性,表明岩石圈浮力和地幔牵引力相结合。斯坦普斯通过计算机建模和全球定位系统以毫米级精度绘制地表运动图来研究这些过程,他把大陆裂谷的不同变形方式比作玩"硅胶泥"。弗吉尼亚理工大学理学院地球科学系副教授斯坦普斯说:"如果你用锤子敲打硅胶泥,它实际上会破裂。但如果你慢慢地把它拉开,硅胶就会拉伸。因此,在不同的时间尺度上,地球岩石圈的表现是不同的。"无论是拉伸还是断裂,大陆裂缝产生的形变通常遵循与裂缝相关的可预测方向模式:变形往往与裂谷垂直。东非大裂谷系统是地球上最大的大陆裂谷系统,它就具有这种垂直于裂谷的变形。但是,在使用全球定位系统仪器对裂谷系统进行了长达12年多的测量后,斯坦普斯也观测到了与裂谷系统平行的反方向变形。她在大地测量学和构造物理学实验室的团队一直在努力寻找原因。助理教授莎拉-斯坦普斯(D.SarahStamps)。资料来源:弗吉尼亚理工大学在最近发表在《地球物理研究杂志》(JournalofGeophysicalResearch)上的一项研究中,研究小组利用三维热力学模型探索了东非大裂谷系统背后的过程,该模型由该研究的第一作者塔希里-拉乔纳里森(TahiryRajaonarison)开发。他的模型显示,裂谷系统不寻常的、裂谷平行的变形是由与非洲超级隆起相关的向北地幔流驱动的,非洲超级隆起是一个巨大的地幔上涌,从西南非洲地下的地球深处升起,向东北方向穿过非洲大陆,随着向北延伸变得越来越浅。他们的发现与研究人员利用Rajaonarison的建模技术于2021年发表的一项研究中的见解相结合,有助于澄清科学界关于哪种板块驱动力主导东非大裂谷系统的争论,从而解释其垂直于裂谷和平行于裂谷的变形:岩石圈浮力、地幔牵引力或两者兼而有之。作为一名博士后研究员,斯坦普斯开始利用全球定位系统站的数据观测东非大裂谷系统不寻常的、裂谷平行的形变,这些数据站从大约2.5万公里外测量来自30多颗环绕地球运行的卫星的信号。她的观测结果为围绕裂谷系统驱动因素的争论增添了一层复杂性。一些科学家认为,东非的断裂主要是由岩石圈浮力驱动的,这种浮力相对较浅,主要归因于断裂系统的高地形(即非洲超海湾)和岩石圈的密度变化。还有人指出水平地幔牵引力是主要的驱动力,它是与东非地下水平流动的地幔相互作用而产生的更深层的力。研究小组2021年的研究通过三维计算模拟发现,裂谷及其变形可能是由这两种力量共同驱动的。他们的模型显示,岩石圈浮力是造成更可预测的、与裂谷垂直的变形的原因,但这些力量无法解释斯坦普斯的全球定位系统测量所发现的异常的、与裂谷平行的变形。在他们最新发表的研究中,Rajaonarison再次使用了三维热力学模型,这次他重点研究了裂谷平行变形的来源。他的模型证实,在东非大裂谷系统下观察到的异常变形和裂谷平行地震各向异性是由非洲超级卷积造成的。斯坦普斯说,地震各向异性是岩石在特定方向上的定向或排列,是对地幔流动、熔块或岩石圈中预先存在的结构构造的反应。在这种情况下,岩石的排列与非洲超级火山口向北的地幔流动方向一致,这表明地幔流动是岩石的来源。Rajaonarison说:"我们的意思是,地幔流动并没有驱动某些变形的东西向、与裂谷垂直的方向,但它可能导致了与裂谷平行的异常向北变形。我们的研究证实了之前的观点,即岩石圈浮力是裂谷的驱动力,但我们也带来了新的见解,即异常形变可能发生在东非"。更多地了解大陆裂解的过程,包括这些异常的过程,将有助于科学家们破解大陆断裂背后的复杂性,几十年来他们一直在尝试破解大陆断裂。斯坦普斯说:"我们对拉贾奥纳里森博士的数值建模结果感到兴奋,因为它提供了关于通过大陆裂解塑造地球表面的复杂过程的新信息。"...PC版:https://www.cnbeta.com.tw/articles/soft/1377603.htm手机版:https://m.cnbeta.com.tw/view/1377603.htm

封面图片

科学家发现地球的双胞胎 - 金星几乎没有水的原因

科学家发现地球的双胞胎-金星几乎没有水的原因访问:Saily-使用eSIM实现手机全球数据漫游安全可靠源自NordVPN由于水以氢原子的形式流失到太空中,金星如今十分干燥。在主要的流失过程中,HCO+离子与电子重新结合,产生速度极快的氢原子(橙色),这些氢原子利用CO分子(蓝色)作为发射台逃逸。资料来源:AuroreSimonnet/科罗拉多大学博尔德分校大气与空间物理实验室这项新研究填补了研究人员所谓的"金星上水的故事"中的一大空白。研究小组利用计算机模拟发现,金星大气中的氢原子通过一种被称为"解离重组"的过程呼啸着进入太空,导致金星每天流失的水量大约是之前估计的两倍。研究小组于5月6日在《自然》杂志上发表了他们的研究成果。这些结果有助于解释银河系中许多行星上的水是如何形成的。大气与空间物理实验室(LASP)的研究科学家、新论文的共同第一作者埃林-坎吉(ErynCangi)说:"水对于生命来说真的很重要。我们需要了解宇宙中支持液态水的条件,这些条件可能产生了今天金星非常干燥的状态。"她补充说,金星确实很干。如果把地球上所有的水像涂果酱一样涂在地球上,只会得到一个大约3公里(1.9英里)深的液体层。如果在金星上做同样的事情,由于所有的水都被困在空气中,最终只有3厘米(1.2英寸)深,勉强够把脚趾弄湿。这项研究的共同第一作者、LASP的研究科学家迈克尔-查芬(MichaelChaffin)说:"金星的水量比地球少10万倍,尽管它的大小和质量基本相同。"在目前的研究中,研究人员使用计算机模型将金星理解为一个巨大的化学实验室,放大金星漩涡状大气中发生的各种反应。研究小组报告说,金星大气层中一种名为HCO+(由氢、碳和氧各一个原子组成的离子)的分子可能是金星逸出水的罪魁祸首。对于这项研究的共同第一作者坎吉来说,这些发现揭示了新的线索,即为什么金星可能曾经看起来与地球几乎一模一样,但今天却面目全非。坎吉于2023年在中大博尔德分校获得了天体物理和行星科学博士学位,她说:"我们正试图弄清每颗行星上发生了哪些微小的变化,促使它们进入这些截然不同的状态。"她指出,金星在历史上并不总是像现在这样的沙漠状态。科学家猜测,数十亿年前,在金星形成的过程中,金星获得了与地球差不多多的水。不知何时,灾难降临了。金星大气层中的二氧化碳云团引发了太阳系中最强大的温室效应,最终使地表温度升高到华氏900度。在这个过程中,金星的水全部蒸发成了蒸汽,大部分飘散到了太空中。但这种古老的蒸发无法解释金星为什么会像今天这样干燥,也无法解释它是如何不断向太空流失水分的。"打个比方,如果我把水瓶里的水倒掉。还会剩下几滴水,"Chaffin说。"然而,在金星上,几乎所有剩余的水滴也都消失了。根据这项新研究,罪魁祸首就是难以捉摸的HCO+。"查芬和坎吉解释说,在行星高层大气中,水与二氧化碳混合形成这种分子。在之前的研究中,研究人员报告说,HCO+可能是导致火星失去大量水分的原因。金星上的工作原理如下:大气中不断产生HCO+,但单个离子存活时间不长。大气层中的电子会发现这些离子,并重新结合,将离子一分为二。在这个过程中,氢原子被拉走,甚至可能完全逃逸到太空中--夺走了金星水的两个组成部分之一。在新的研究中,研究小组计算出,解释金星干燥状态的唯一方法是金星大气中的HCO+含量超过预期。研究小组的发现有一个转折点。科学家们从未在金星周围观测到过HCO+。Chaffin和Cangi认为,这是因为他们从未有过合适的仪器进行观测。近几十年来,已经有数十次任务访问了火星,但前往距离太阳第二颗行星的航天器却少得多。没有一个航天器携带的仪器能够探测到HCO+,而HCO+正是研究小组新发现的逃逸路线的动力。Chaffin说:"这项工作令人惊讶的结论之一是,HCO+实际上应该是金星大气中最丰富的离子之一。"然而近年来,越来越多的科学家将目光投向了金星。例如,美国国家航空航天局(NASA)计划进行的金星深层大气惰性气体、化学和成像调查(DAVINCI)任务,将把一个探测器穿过金星的大气层,一直投放到金星表面。它计划在本十年末发射。DAVINCI也无法探测到HCO+,但研究人员希望,未来的任务可能会揭示金星上水的另一个关键部分。"前往金星的任务并不多,但新计划的任务将利用数十年的集体经验和人们对金星的浓厚兴趣,探索行星大气、进化和宜居性的极端情况。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1430279.htm手机版:https://m.cnbeta.com.tw/view/1430279.htm

封面图片

从熔岩到生命 科学家探究地球早期高度氧化的岩浆海洋

从熔岩到生命科学家探究地球早期高度氧化的岩浆海洋研究提供了有关早期地球大气层的新见解,表明它是由氧化态比以前认为的更高的岩浆海洋中的脱气挥发物形成的。研究发现,早期地球岩浆海洋的Fe3+含量是今天上地幔的十倍,从而形成了富含二氧化碳和二氧化硫的大气层。陆地行星的大气层一直被认为是由内部的挥发物脱气形成的,其成分主要受地幔氧化态的控制。要了解地幔氧化态,地幔中亚铁(Fe2+)和铁(Fe3+)的丰度是关键,因为地幔氧化态随这两种铁氧化物的相对丰度而变化。图像中心的明亮区域表示淬火金属熔体,周围的灰色区域表示淬火硅酸盐熔体。样品被封装在石墨囊中,在加热实验中转变为金刚石。资料来源:爱媛大学地球动力研究中心地幔氧化状态和研究结果日本爱媛大学领导的一项实验研究表明,在相当于下地幔深度的高压条件下,金属饱和岩浆中通过Fe2+的氧化还原歧化形成Fe3+的效率比以前想象的要高。在这一反应中,Fe3+和金属铁(Fe0)由2Fe2+生成,Fe0偏析到地核中增加了残余岩浆中Fe3+的含量及其氧化态。实验结果表明,地核形成时地球岩浆海洋中的Fe3+含量比现在的上地幔高出约一个数量级。对早期地球岩浆洋的影响这表明岩浆洋在地核形成后的氧化性比现在的地幔强得多,这种高氧化性岩浆的挥发物脱气形成的大气应该富含二氧化碳和二氧化硫。此外,作者还发现,根据地质记录的推断,估计的地球岩浆海洋氧化态可以解释40多亿年前的哈代岩浆的氧化态。由于生物分子在富含二氧化碳的大气中的形成效率相当低,作者推测地球形成后还原物质的后期增殖在提供生物可用有机分子和形成宜居环境方面发挥了重要作用。...PC版:https://www.cnbeta.com.tw/articles/soft/1378841.htm手机版:https://m.cnbeta.com.tw/view/1378841.htm

封面图片

科学家发现地球生命的潜在星际起源

科学家发现地球生命的潜在星际起源在地球上出现生命之前,基本的有机分子是由氮、硫、碳和磷等稀缺元素形成的。新的研究表明,富含这些元素的宇宙尘埃可能通过在地球上,特别是在冰原融洞中的高浓度积累,启动了前生物化学,从而有可能导致生命组成元素的形成。资料来源:NASA/JPL-Caltech事实上,生命的基本组成元素是如此稀少,以至于化学反应很快就会耗尽,如果它们真的能够进行的话。地球组成岩石的侵蚀和风化等地质过程也无法确保充足的供应,因为地壳中包含的这些元素实在太少了。尽管如此,在地球历史的前5亿年里,发生了一种前生物化学反应,产生了诸如RNA、DNA、脂肪酸和蛋白质等有机分子,所有生命都是在这些有机分子的基础上诞生的。所需数量的硫、磷、氮和碳从何而来?地质学家、诺米斯研究员克雷格-沃尔顿坚信,这些元素主要是以宇宙尘埃的形式来到地球的。这些尘埃是在太空中产生的,例如当小行星相互碰撞时。即使在今天,每年仍有约3万吨尘埃从太空落到地球上。然而,在地球诞生的早期,尘埃的数量要大得多,每年高达数百万吨。然而,最重要的是,尘埃粒子含有大量的氮、碳、硫和磷。因此,它们有可能引发化学级联反应。然而,灰尘的散布范围很广,在任何一个地方都只能发现极少量的灰尘,这一事实与上述说法相悖。沃尔顿说:"但如果把运输过程包括在内,情况就会不同。风、雨或河流在大范围内收集宇宙尘埃,并以浓缩的形式沉积在某些地方。"澄清问题的新模式为了弄清宇宙尘埃是否可能是启动前生物化学(反应)的源头,沃尔顿与剑桥大学的同事们一起建立了一个模型。研究人员利用该模型模拟了在地球历史的最初5亿年里,有多少宇宙尘埃落到了地球上,以及这些尘埃可能在地球表面的哪些地方积聚。他们的研究现已发表在科学杂志《自然-天文学》上。该模型是与剑桥大学的沉积专家和天体物理学家合作开发的。英国研究人员专门从事行星和小行星系统的模拟研究。模拟显示,早期地球上可能存在宇宙尘埃浓度极高的地方。而且,来自太空的补给源源不断。然而,地球形成后,尘埃雨迅速锐减:5亿年后,尘埃流比零年小了一个数量级。研究人员将偶尔出现的上升高峰归因于小行星碎裂并向地球发送了尘埃尾流。冰原上的融化洞是尘埃陷阱大多数科学家和普通人都认为,地球被岩浆海洋覆盖了数百万年;这将在很长一段时间内阻止宇宙尘埃的迁移和沉积。沃尔顿说:"然而,最近的研究发现,有证据表明地球表面冷却和凝固的速度非常快,并形成了大面积的冰原。"根据模拟结果,这些冰原可能是宇宙尘埃积聚的最佳环境。冰川表面的融化孔--即所谓的冷冻孔--不仅会使沉积物积聚,也会使来自太空的尘粒积聚。随着时间的推移,尘埃粒子中释放出相应的元素。当它们在冰川水中的浓度达到临界值时,化学反应就会自动开始,从而形成有机分子,这就是生命的起源。即使在熔洞冰冷的温度下,化学过程也有可能开始进行。沃尔顿说:"低温并不会破坏有机化学,相反,低温下的反应比高温下的反应更有选择性和特异性。其他研究人员已经在实验室中证明,简单的环形核糖核酸(RNA)会在冰点附近的温度下自发地在这种融水汤中形成,然后进行自我复制。该论点的一个弱点可能是,在低温条件下,形成有机分子所需的元素只能非常缓慢地从尘埃粒子中溶解出来。"启动关于生命起源的辩论沃尔顿提出的理论在科学界并非没有争议。这项研究肯定会引发一场有争议的科学辩论,但它也会引发关于生命起源的新观点。早在18和19世纪,科学家们就确信陨石将沃尔顿所说的"生命元素"带到了地球。即使在当时,研究人员也在来自太空的岩石中发现了大量这些元素,但在地球的基岩中却没有发现。沃尔顿说:"然而,从那时起,几乎没有人考虑过前生物化学主要是由陨石引发的这一观点。"沃尔顿解释说:"陨石的想法听起来很有吸引力,但有一个问题。一块陨石只能在有限的环境中提供这些物质;陨石撞击地面的位置是随机的,而且无法保证进一步的供应。我认为,生命的起源不太可能依赖于几块广泛而随机散落的岩石。"另一方面,我认为富集的宇宙尘埃是一个可信的来源。"沃尔顿的下一步将是通过实验检验他的理论。在实验室中,他将使用大型反应容器来重现原始熔洞中可能存在的条件,然后将初始条件设定为40亿年前低温熔洞中可能存在的条件,最后再观察是否真的发生了产生生物相关分子的化学反应。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1428240.htm手机版:https://m.cnbeta.com.tw/view/1428240.htm

封面图片

远古海洋和行星碰撞的遗迹 科学家揭开地球神秘"D"层的新面纱

远古海洋和行星碰撞的遗迹科学家揭开地球神秘"D"层的新面纱与完美的球体不同,D"层出人意料地错落有致。它的厚度因地而异,有些地区甚至完全没有"D"层--就像大陆高出地球海洋一样。这些有趣的变化吸引了地球物理学家的注意,他们将D"层描述为一个异质或非均匀区域。由胡青阳博士(高压科学与技术高等研究中心)和邓杰博士(普林斯顿大学)领导的一项新研究表明,"D"层可能起源于地球的早期。他们的理论基于"巨型撞击假说"(GiantImpacthypothesis),该假说认为一个火星大小的天体撞击了原地球,在撞击后形成了一个覆盖整个地球的岩浆海洋。他们认为,"D"层可能是这一巨大撞击留下的独特成分,可能蕴藏着地球形成的线索。邓杰博士强调,在这个全球岩浆海洋中存在大量的水。这些水的确切来源仍是一个争论不休的话题,人们提出了各种理论,包括通过星云气体和岩浆之间的反应形成,或由彗星直接输送。普遍的观点认为,水会随着岩浆的冷却而向岩浆海洋的底部集中。到最后阶段,最靠近地核的岩浆所含的水量可能与地球现今的海洋相当。海底岩浆海洋中的极端压力和温度条件创造了一种独特的化学环境,促进了水和矿物之间发生意想不到的反应。胡青阳博士解释说:"我们的研究表明,这种含水岩浆海洋有利于形成一种富铁相,即过氧化铁镁。这种过氧化物的化学式为(Fe,Mg)O2,与下地幔中的其他主要成分相比,它对铁的偏好更为强烈。根据我们的计算,这种过氧化物对铁的亲和力可能会导致在几公里到几十公里厚的地层中积累以铁为主的过氧化物。"地核-地幔边界异质结构的形成这种富铁过氧化物相的存在将改变D"层的矿物组成,偏离我们目前的理解。根据新的模型,D"层的矿物将以一种新的组合为主:贫铁硅酸盐、富铁(铁、镁)过氧化物和贫铁(铁、镁)氧化物。这种以铁为主的过氧化物还具有低地震速度和高导电性,使其成为解释D"层独特地球物理特征的潜在候选物质。这些特征包括超低速度区和高电导率层,两者都是D"层众所周知的成分异质性的原因。研究结果表明,由岩浆海洋中的古水形成的富铁过氧化物在形成"D"层的异质结构方面发挥了至关重要的作用。这种过氧化物对铁的强烈亲和力在这些富铁斑块和周围地幔之间形成了鲜明的密度对比。从根本上说,它就像一个绝缘体,阻止它们混合,并有可能解释在下地幔底部观察到的长期异质性。这个模型与最近的数值建模结果非常吻合,表明最下层地幔的异质性可能是一个长期存在的特征。编译自/scitechdaily...PC版:https://www.cnbeta.com.tw/articles/soft/1432963.htm手机版:https://m.cnbeta.com.tw/view/1432963.htm

封面图片

我国科学家在大陆地幔中发现来自海洋的锂元素

我国科学家在大陆地幔中发现来自海洋的锂元素利用矿物原位锂同位素分析方法,中国科学院青藏高原研究所碰撞隆升及影响团队史仁灯研究员及其合作者系统分析了青藏高原地幔橄榄岩中的锂含量和锂同位素组成。研究发现,海水中锂扩散作用等地表过程是地球深部地幔锂同位素变重的原因。上述成果2月19日在线发表于Nature旗下刊物《科学报告》(ScientificReports),为研究地质历史时期青藏高原不同圈层相互作用开拓了新思路,可服务国家矿产资源战略需求。(央视新闻)

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人