科学家们计算出北溪管道破裂事件带来的甲烷泄漏对气候的影响

科学家们计算出北溪管道破裂事件带来的甲烷泄漏对气候的影响因此,这一事件是否会产生负面的气候影响是全世界关注的一个关键问题。尽管《自然》杂志上发表的一篇新闻文章对这一问题进行了评论,但没有做出定量的结论。北溪管道泄露事件是人类历史上单一事件中最大的甲烷排放。最近,中国科学院大气物理研究所的科学家们通过采用政府间气候变化专门委员会2021年发布的第六次评估报告(IPCCAR6)的节能框架,估计了泄漏的甲烷可能产生的气候影响。他们的研究结果今天(11月11日)发表在《大气科学进展》杂志上。首先,研究人员收集了事件发生后世界媒体提供的所有关于泄漏甲烷总量的估计,结果发现,最早的估计(1-2天后)达到了50万吨(Mt)。然而,后来发现,泄漏的甲烷数量可能比最初的估计要低得多。特别是,来自中国南京大学的一个团队,通过利用多种观测,包括来自高分辨率卫星的观测,提供了一个更准确的估计,即0.22±0.03亿吨。这个数值确定了这是人类历史上单一事件中最大的甲烷排放--是2015年加州阿利索峡谷事故的2倍多。然而,根据IPCCAR6,在2008-2017年间,石油和天然气部门的甲烷年排放量高达7千万吨。这意味着北溪管道泄漏的甲烷只相当于这些部门1天的排放量。IPCCAR6还强调,大气中的甲烷通过与某些自由基(如羟基自由基)反应而逐渐被清除,导致其寿命约为10年,与二氧化碳相比其寿命很短。这意味着甲烷的气候影响取决于时间范围,当试图直接计算时,问题会变得复杂。相反,研究人员在"全球升温潜能"概念的帮助下进行了间接估计。具体来说,他们确定,在甲烷排放到大气中后的未来20年里,每单位质量的甲烷所积累的热量是二氧化碳的82.5倍。然后,利用这些信息,他们能够计算出,当考虑到20年的时间范围时,泄漏的甲烷对气候的影响相当于20.6百万吨的二氧化碳,这将使大气中的二氧化碳浓度只增加0.0026ppm。根据IPCCAR6对二氧化碳翻倍下的有效辐射强迫、气候反馈和海洋吸热效率的最新评估,在能量守恒框架下,全球平均地表空气温度理论上会增加1.8×10-5℃。"这样微小的升温在生态系统和人类社会中是无法感知的,"该研究的第一作者陈小龙博士解释说。"尽管如此,人为甲烷一直是全球变暖的第二大驱动力,而且是从农业和工业的多个部门排放出来的。如果我们要实现《巴黎协定》中规定的低于1.5℃或2℃的变暖目标,就应该避免对这样的基础设施的破坏,这样我们才能更好地控制和减少甲烷排放"。...PC版:https://www.cnbeta.com.tw/articles/soft/1332543.htm手机版:https://m.cnbeta.com.tw/view/1332543.htm

相关推荐

封面图片

北溪泄漏之后 有个问题比能源危机更让人担忧

北溪泄漏之后有个问题比能源危机更让人担忧俄罗斯位于波罗的海的两条北溪输气管道发生不明原因的泄漏,尽管目前还不清楚泄漏的程度,人们担心这一泄漏可能导致温室气体排放增加,带来气候灾难。虽然这两条管道都没有在运行,但都含有天然气——主要由甲烷组成,甲烷是一种强有力的温室气体,是气候变化的第二大原因,仅次于二氧化碳。PC版:https://www.cnbeta.com/articles/soft/1321869.htm手机版:https://m.cnbeta.com/view/1321869.htm

封面图片

科学家发现从工业排放中捕集碳的更好方法

科学家发现从工业排放中捕集碳的更好方法俄勒冈州立大学的研究人员发现,一种被称为金属有机框架(MOF)的具有成本效益的纳米材料,即使在潮湿的条件下也能有效去除工业排放物中的二氧化碳。这种新型MOF由铝和一种普通配位体组成,有望解决碳捕集过程中的一些难题,包括高成本和在潮湿环境中的有效性降低。图片来源:KyriakosStylianou提供,OSU科学学院。二氧化碳是一种温室气体,由燃烧化石燃料产生,是气候变暖的主要原因之一。Stylianou指出,过滤空气中碳的设施开始在全球兴起--世界上最大的过滤设施将于2021年在冰岛投入使用--但它们还不足以对全球的排放问题产生重大影响。冰岛发电厂一年的二氧化碳排放量相当于大约800辆汽车的年排放量。不过,在工厂等进入大气层的地方减缓二氧化碳排放的技术相对来说已经发展得很成熟。其中一项技术涉及被称为金属有机框架(MOFs)的纳米材料,这种材料可以在烟气通过烟囱时通过吸附作用拦截二氧化碳分子。化学助理教授Stylianou说:"二氧化碳的捕获对于实现净零排放目标至关重要。由于多孔性和结构的多样性,MOFs在碳捕集方面展现出了广阔的前景,但合成MOFs通常意味着要使用重金属盐和有毒溶剂等在经济和环境方面都很昂贵的试剂。"他说,此外,处理烟囱气体中的水份也使二氧化碳的去除变得非常复杂。许多已显示出碳捕集潜力的MOF在潮湿条件下失去了功效。烟道气可以进行干燥处理,但这会大大增加二氧化碳去除过程的成本,足以使其在工业应用中失去可行性。因此,我们试图利用MOF来解决目前用于碳捕集的材料的各种局限性:成本高、对二氧化碳的选择性差、在潮湿条件下稳定性低以及二氧化碳吸收能力低。MOFs是一种结晶多孔材料,由带正电荷的金属离子和被称为配体的有机"连接"分子组成。金属离子形成节点,与连接体的臂结合在一起,形成类似笼子的重复结构;该结构具有纳米级孔隙,可以吸附气体,类似于海绵。MOF可由多种成分设计而成,这些成分决定了MOF的特性。化学研究人员已经合成了近10万种MOF,并对另外50万种MOF的特性进行了预测。"在这项研究中,我们引入了一种由铝和一种容易获得的配体(苯-1,2,4,5-四羧酸)组成的MOF,"Stylianou说。"MOF在水中合成,只需几个小时。MOF具有与二氧化碳分子大小相当的孔隙,这意味着有一个密闭的空间可以囚禁二氧化碳。MOF在潮湿的条件下也能很好地工作,而且更喜欢二氧化碳而不是氮气,这一点非常重要,因为氮氧化物是烟道气的一种成分。如果没有这种选择性,MOF就有可能与错误的分子结合。"这种MOF是湿法燃烧后碳捕集应用的理想候选材料,它成本低廉,分离性能优异,可以再生和重复使用至少三次,且吸收能力相当。"...PC版:https://www.cnbeta.com.tw/articles/soft/1377049.htm手机版:https://m.cnbeta.com.tw/view/1377049.htm

封面图片

加拿大森林大火直接排放超10亿吨二氧化碳

加拿大森林大火直接排放超10亿吨二氧化碳在接受采访时,中国科学院沈阳应用生态所和大气物理所披露称,目前加拿大林火的二氧化碳排放量已达到10亿吨。“加拿大林火排放的二氧化碳、甲烷和氧化亚氮等温室气体,对全球气候变暖造成不可忽视的影响,已发展为全球性环境事件。”据估算,截至目前,此次林火排放的甲烷和氧化亚氮的温室效应约相当于1.1亿吨的二氧化碳当量,加上直接排放的10亿吨二氧化碳,此外,加拿大林火约有1/8发生在冻土区,促进了储存在冻土中的甲烷释放。火灾对加拿大及周边地区的空气质量也造成极大影响,加拿大和美国多个城市被林火造成的烟霾笼罩,污染物直线上升,成为了连日以来全球空气质量最差的城市。...PC版:https://www.cnbeta.com.tw/articles/soft/1373441.htm手机版:https://m.cnbeta.com.tw/view/1373441.htm

封面图片

科学家发现以前未知的甲烷排放源

科学家发现以前未知的甲烷排放源甲烷是继二氧化碳之后人类活动产生的第二大温室气体。在二十年内,甲烷的全球升温潜能值比二氧化碳高出80多倍,其中最主要的排放源来自湿地、农业、废物和化石燃料生产。尽管甲烷在大气中的存在时间相对较短,约为12年,而二氧化碳的存在时间则长达数百年,但减少甲烷排放对于在近期和中期内遏制全球变暖具有重大意义。全球甲烷排放的很大一部分发生在城市。许多地方都会有意或无意地排放甲烷。慕尼黑工业大学(TUM)的研究团队选择汉堡作为追踪甲烷泄漏和其他未知来源的地点。汉堡不仅是德国人口第二大城市,也是一个港口和工业城市。它还是港口和工业中心。汉堡拥有各种甲烷来源,为该项目提供了理想的条件。通过该项目,研究小组成功地在汉堡发现了许多以前未被发现的甲烷源。除了易北河等自然排放源之外,人类活动也是甲烷排放的主要来源。这些排放物中约有一半来自泄漏的天然气管道、不完全燃烧以及其他工业和逃逸性排放物。通过移动测量,研究人员还发现了未知的甲烷来源。他们发现,汉堡约有2%的人为甲烷排放来自一家炼油厂和附近一家养牛场的泄漏管道,而最新的排放清单中对这一比例的估计严重不足。研究人员从荷兰研究机构TNO的排放地图入手。该地图提供了汉堡温室气体排放的空间分布图,其依据是使用替代数据(人口密度图等)进行空间分布的国家报告排放量。为了检查和更新地图上显示的数值,团队选择了两种方法:"首先,我们使用装有传感器的汽车进行移动测量。我们驾驶汽车经过预计会检测到甲烷排放的地区,以便更好地了解空间分布情况。其次,我们利用传感器网络来测量城市的总体排放量。"慕尼黑工业大学环境传感与建模教授陈佳说:"该网络由四个测量装置组成,我们在以前的研究中曾用它们来测量慕尼黑的排放量。我们的传感器网络使用太阳作为光源。由于大气中的每个分子都只吸收特定频率的阳光,因此我们可以确定测量设备和太阳之间的气柱中各种温室气体的浓度"。为了了解汉堡市内温室气体的排放量,研究人员将一个测量装置放置在市中心,其他测量装置分别放置在东郊、南郊和西郊。"这意味着,一个传感器始终位于城市的上风处,而另一个传感器则位于下风处。如果第二个测量值高于第一个测量值,我们就可以利用大气传输模型来量化城市中释放的温室气体。"该研究的第一作者、环境传感与建模教授研究员AndreasForstmaier说:"为此,我们使用光学风力激光雷达测量风速、风向和湍流。"为城市设计的方法今后将扩展到利用卫星进行全球测量。研究人员希望通过这项工作,为了解气候变化和减缓气候变化进程做出决定性贡献。...PC版:https://www.cnbeta.com.tw/articles/soft/1386947.htm手机版:https://m.cnbeta.com.tw/view/1386947.htm

封面图片

中国将建立电力二氧化碳排放因子常态化发布机制

中国将建立电力二氧化碳排放因子常态化发布机制中国生态环境部、国家统计局发布公告称,将建立电力二氧化碳排放因子常态化发布机制,并拟于2024年尽早发布2022年电力二氧化碳排放因子。根据《人民日报》星期二(4月16日)报道,中国生态环境部、国家统计局发布《关于发布2021年电力二氧化碳排放因子的公告》。此次发布的2021年电力二氧化碳排放因子,分为三种口径,包括2021年全国、区域及省级电力平均二氧化碳排放因子,2021年全国电力平均二氧化碳排放因子(不包括市场化交易的非化石能源电量)和2021年全国化石能源电力二氧化碳排放因子。据介绍,电力二氧化碳排放因子是核算电力消费二氧化碳排放量的重要基础参数。本次发布的电力二氧化碳排放因子可供不同主体核算电力消费的二氧化碳排放量时参考使用,是落实《关于加快建立统一规范的碳排放统计核算体系实施方案》中“统筹推进排放因子测算”要求的重要举措,为碳排放核算提供基础数据支撑。公告说,下一步,生态环境部、国家统计局将建立电力二氧化碳排放因子常态化发布机制。根据基础数据更新情况,拟于2024年尽早发布2022年电力二氧化碳排放因子。2024年4月16日8:16PM

封面图片

新型反应堆系统将二氧化碳转化为可用燃料

新型反应堆系统将二氧化碳转化为可用燃料锅炉的效率通常很高。因此,仅靠提高燃烧效率很难减少二氧化碳排放。因此,研究人员正在探索其他方法,以减轻锅炉排放的二氧化碳对环境的影响。为此,一个很有前景的策略是捕获这些系统排放的二氧化碳,并将其转化为有用的产品,如甲烷。要实施这一战略,需要一种特殊类型的膜反应器,即分配器型膜反应器(DMR),它既能促进化学反应,又能分离气体。虽然DMR已在某些行业中使用,但其在将二氧化碳转化为甲烷方面的应用,尤其是在锅炉等小型系统中的应用,仍相对较少。由日本芝浦工业大学的野村干弘教授和波兰AGH科技大学的GrzegorzBrus教授领导的一组日本和波兰研究人员填补了这一研究空白。他们的研究成果最近发表在《二氧化碳利用期刊》上。来自日本和波兰的研究人员开发出一种反应堆设计,可有效捕捉二氧化碳排放并将其转化为可用的甲烷燃料。这一突破可大幅减少温室气体排放,为实现碳中和的未来铺平道路。资料来源:日本SIT的野村干弘教授研究小组双管齐下,通过数值模拟和实验研究来优化反应器设计,以便将小型锅炉中的二氧化碳高效转化为甲烷。在模拟过程中,研究小组模拟了气体在不同条件下的流动和反应。这反过来又使他们能够最大限度地减少温度变化,确保在甲烷生产保持可靠的同时优化能源消耗。研究小组还发现,与将气体导入单一位置的传统方法不同,分布式进料设计可以将气体分散到反应器中,而不是从一个地方送入。这反过来又能使二氧化碳更好地分布在整个膜中,防止任何位置过热。野村教授解释说:"与传统的填料床反应器相比,这种DMR设计帮助我们将温度增量降低了约300度。"除了分布式进料设计,研究人员还探索了影响反应器效率的其他因素,并发现一个关键变量是混合物中的二氧化碳浓度。改变混合物中的二氧化碳含量会影响反应的效果。"当二氧化碳浓度为15%左右(与锅炉中的二氧化碳浓度相似)时,反应器生产甲烷的效果要好得多。事实上,与只有纯二氧化碳的普通反应器相比,它能多产生约1.5倍的甲烷,"野村教授强调说。此外,研究小组还研究了反应器尺寸的影响,发现增大反应器尺寸有助于为反应提供氢气。不过,需要考虑一个折衷的问题,因为提高氢气可用性的好处需要谨慎的温度管理,以避免过热。因此,这项研究为解决温室气体排放的主要来源问题提供了一个前景广阔的解决方案。通过利用DMR,可以成功地将低浓度二氧化碳排放转化为可用的甲烷燃料。由此获得的益处不仅限于甲烷化,还可应用于其他反应,从而使这种方法成为高效利用二氧化碳的多功能工具,甚至适用于家庭和小型工厂。这项研究得到了波兰国家机构、克拉科夫AGH大学和日本科学促进会的资助。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1432823.htm手机版:https://m.cnbeta.com.tw/view/1432823.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人