3D显微镜捕捉的视频可实时追踪病毒的入侵和飞速发展

3D显微镜捕捉的视频可实时追踪病毒的入侵和飞速发展这是因为病毒在进入细胞之前很难对它们进行成像--在那种环境下,它们的移动速度要快得多,而且与它们所感染的细胞相比相对较小。这就是为什么这是一个如此难以研究的问题,"该研究的作者CourtneyJohnson说。"这就像你试图拍摄一个站在摩天大楼前的人的照片。你不可能用一张照片拍下整座摩天大楼并看到它前面的人的细节。"因此,为了这项新的研究,杜克大学的研究人员开发了一种新的成像技术,他们称之为3D跟踪成像显微镜(3D-TrIm)。它的工作原理是将两台显微镜合二为一--第一台显微镜使用激光每秒扫描数千次以准确定位病毒的位置。病毒通过附着在它身上的荧光标签变得可见,激光激发它使其发光,这样它就能被显微镜看到。第二台显微镜拍摄其周围较大细胞的三维图像,在病毒寻找进入途径的过程中创造出病毒运动的实时三维视频。以下的视频就显示了这方面的一个例子:https://youtu.be/mv0WYvmJlUk在两分半钟的跟踪过程中,可以看到病毒作为一个小红点在周围飞驰,而紫色的线条表示它过去的路径。它周围的绿色山丘实际上是人类的肠道细胞。研究小组表示,这项技术可以帮助揭开更多关于病毒如何感染细胞的谜团。但在此之前,还需要做出改进,比如找到一种方法使病毒发光更久。该研究发表在《自然方法》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1332861.htm手机版:https://m.cnbeta.com.tw/view/1332861.htm

相关推荐

封面图片

研究人员开发出大视场高速超分辨率显微镜

研究人员开发出大视场高速超分辨率显微镜研究人员开发了一种荧光显微镜,利用结构照明在宽视场范围内进行快速超分辨率成像。它还可用于多色和高速成像。图片来源:比勒费尔德大学HenningOrtkrass德国比勒费尔德大学的亨宁-奥特克拉斯(HenningOrtkrass)说:"通常开给慢性病患者或老年人的多种药物组合的影响可能导致危险的相互作用,并正在成为一个主要问题。我们开发的这款显微镜是EICPathfinderOpenProjectDeLIVERy项目的一部分,该项目旨在开发一个平台,用于研究个体患者的多重用药情况。"研究人员使用新的显微镜装置对固定的多色染色肝细胞进行成像。图像显示了细胞的微小膜结构,这些结构小于光的衍射极限。图片来源:比勒费尔德大学HenningOrtkrass在Optica出版集团的《光学快报》(OpticsExpress)杂志上,研究人员介绍了他们的新型显微镜,该显微镜利用光纤传输激发光,在非常大的视野范围内实现了非常高的图像质量,并具有多色和高速功能。研究表明,该仪器可用于肝细胞成像,视场可达150x150μm²,成像速率高达44Hz,同时保持小于100nm的时空分辨率。Ortkrass说:"使用这种新型显微镜,可以在离体细胞上测试单个药物组合,然后进行超分辨率成像,观察细胞膜特征或细胞器的动态变化。大视场可以提供有关细胞反应的统计信息,这些信息可用于改善个性化医疗保健。由于该系统的潜在尺寸较小,它还可用于高分辨率非常重要的临床应用。"新型荧光显微镜采用结构照明,可在宽视场范围内快速进行超分辨率成像。还可以进行多色成像,如视频所示。图片来源:比勒费尔德大学HenningOrtkrass这种新型显微镜基于超分辨结构照明显微镜(SR-SIM),利用结构化的光模式激发样品中的荧光,实现超越光衍射极限的空间分辨率。SR-SIM特别适合活细胞成像,因为它使用低功耗激发,不会伤害样本,同时还能生成高度精细的图像。为了实现宽视场的高分辨率,新型显微镜从一组原始图像中重建超分辨图像。这些原始图像是通过使用一组六根光纤,以正弦条纹图案照射样品获得的。这样,分辨率提高了两倍,同时还能实现快速成像,并与活细胞成像兼容。得益于显微镜的大视野,可以同时获取多个细胞的超分辨率图像。图片来源:HenningOrtkrass,比勒费尔德大学Ortkrass说:"光纤选择和相移是通过基于振镜和MEMS镜的全新设计的光纤开关实现的。为此我们还定制设计了一个六边形支架,可将六根光纤的光束准直并重新聚焦到显微镜中,以照亮一个大的FOV并对所有光束进行精确调整。这使得该装置可用于全内反射荧光激发(TIRF)-SIM,从而将荧光激发和检测限制在样品的薄区域内。"由于肝脏是参与药物代谢的主要器官,研究人员使用固定的多色染色大鼠肝细胞样本对该装置进行了测试。利用新型显微镜生成的重建图像可以观察到小于光衍射极限的微小膜结构。Ortkrass说:"这种紧凑型系统独特地将大视野、快速图案切换速度与多色、高能效激发结合在一起。此外,该装置还能获得极高的图像质量,并可进行调整,以执行2D-SIM或TIRF-SIM。"下一步,研究人员计划将该显微镜装置应用于肝细胞的活细胞研究,以观察接受多种药物治疗的细胞的动态变化。他们还计划改进图像重建过程,以完成对获取的原始数据进行实时重建。...PC版:https://www.cnbeta.com.tw/articles/soft/1382739.htm手机版:https://m.cnbeta.com.tw/view/1382739.htm

封面图片

新型二合一显微镜可详细观察细胞内部结构

新型二合一显微镜可详细观察细胞内部结构如今,科学家们已经能够使用功能强大的显微镜窥视细胞内部。要了解特定生物分子是如何作用和反应的,这一点非常重要。然而,这些工具也有一些缺点。以超分辨率荧光显微镜(SRM)为例。它非常适合追踪细胞中的单个分子(如蛋白质),但不能向科学家展示附近发生了什么。此外,虽然低温电子断层扫描(cryo-ET)可以获得高分辨率的细胞图像,但它无法精确定位单个分子在做什么。因此,美国能源部斯坦福线性加速器中心(SLAC)国家加速器实验室的研究人员着手将这两种成像技术结合到一台显微镜中。研究报告的第一作者彼得-达尔伯格(PeterDahlberg)说:"我们的目标是保持两种技术的优点。保留了荧光显微镜的分子特异性,所以你知道谁是谁,然后可以把它放在低温电子显微镜的高分辨率结构中。"荧光显微镜技术是用一种较小的分子标记单个分子,这种分子在光线照射下会发光。然后就可以在普通的--尽管分辨率非常高--光学显微镜下追踪该分子。低温电子显微镜使用电子显微镜来研究细胞等速冻样本。将这两种技术相结合后,研究人员立即遇到了需要克服的问题。首先,必须将含有荧光标记分子的细胞投放到直径仅为3毫米的低温电子显微镜网格上,然后快速冷冻,使网格上的水变成玻璃(玻璃化)。一旦冻结,细胞就必须保持冻结状态。第二个问题是冷冻细胞的大小--它们有数千纳米厚--但冷冻CT使用的电子无法穿透200纳米以下的深度。因此,研究人员开发了一种名为"聚焦离子束铣削系统"的设备,该设备附带扫描电子显微镜(FIB-SEM)。聚焦离子束会切割掉细胞材料,留下冷冻ET可以穿透的极薄的冷冻细胞片。然后,扫描电子显微镜向样品发射电子,生成高分辨率图像。原型FIB-SEM有一个问题:它没有连接光学显微镜,这意味着必须移动冷冻-ET网格才能进行荧光显微镜检查。幸运的是,解决方法很简单。Dahlberg说:"从根本上说,我们只是拆开了这台价值150万美元的精密仪器,安装了这个集成的光学显微镜,现在我们有了一个更好的系统。"研究人员在2020年测试了FIB-SEM,追踪细菌细胞内的蛋白质,发现它可以工作,但意识到冷冻ET网格的材料会吸收光线,破坏冷冻样本。因此,他们进行了一些调整,设计了更好的网格,并为光学显微镜制作了更好的平台。现在,研究人员正在设计不同种类的荧光标签--生物传感器--以便在低温条件下工作。生物传感器是一种荧光分子,能根据当地环境改变其发射或激发特性,在一种环境中发出一种颜色,而在另一种环境中则发出不同的颜色。Dahlberg说:"它们可以被调整为对pH值、适应数百种环境变量。因此,除了具体位置和高分辨率结构信息外,你还可以知道我的细胞是健康的还是生病的?即将进行细胞分裂?ATP浓度高吗?它提供了所有这些额外的内容。"研究人员将继续修补FIB-SEM,直到它得到优化并充分发挥其潜力。...PC版:https://www.cnbeta.com.tw/articles/soft/1389293.htm手机版:https://m.cnbeta.com.tw/view/1389293.htm

封面图片

显微镜自由:廉价镜超过数百万美元高档货

显微镜自由:廉价镜超过数百万美元高档货使用现有超高分辨率和扩展显微镜方法(从左至右1-3)以及ONE显微镜技术(4、5)产生的微管蛋白图像。图片来源:bioRxiv“显微镜技术也应该有某种形式的自由。”Rizzoli指出,该技术的高分辨率适用于很多人,而不是少数有钱的实验室。传统光学显微镜的能力受到光学定律的限制,这意味着观测小于200纳米物体的结果是模糊的。Rizzoli说,研究人员已经开发出获得超越物理学的超高分辨率的方法,可以将这一极限降低到10纳米左右。这种方法获得了2014年诺贝尔化学奖,它使用光学技巧精确定位附着在蛋白质上的荧光分子。2015年,研究人员提出了另一种规避光学限制的方法。美国麻省理工学院神经工程师EdwardBoyden领导的研究小组发现,充气组织(尿布中使用的一种吸收性化合物)可以使细胞彼此远离。这种被称为膨胀显微镜的技术使显微镜分辨率有了飞跃,可以分辨20纳米左右的结构。Shaib和Rizzoli的技术融合了这两种方法,可以达到1纳米以下的分辨率。这种清晰度足以揭示单个蛋白质的形状,而此前通常使用更昂贵的结构生物学方法,如冷冻电镜,或X射线结晶学方法对这些蛋白质进行成像。膨胀显微镜的简单性是其具有吸引力的部分原因,Boyden估计,超过1000个实验室采用了这项技术。样品经过化学处理,将蛋白质固定在一种聚合物上,加入水后,聚合物会膨胀到原来的1000倍,使分子分离。ONE显微镜技术利用热或酶分解蛋白质,这样单个片段在膨胀过程中就会被拉伸到不同的方向。研究人员已经使用新方法获得了一种神经分子GABAA受体的图片,后者与蛋白质的高分辨率冷冻电镜和X射线结晶学图片非常相似。他们还捕捉到一种名为耳铁蛋白的大体积蛋白质的轮廓,这种蛋白质的结构尚未确定,它有助于在大脑中传递音频信号。这个形状类似于AlphaFold深度学习网络作出的结构预测。该方法无法与冷冻电镜的分辨率相匹配,后者在某些情况下可以揭示小于0.2纳米的近原子级细节。冷冻电镜技术既精细又昂贵。Rizzoli说,相比之下,ONE显微镜可以提供一种了解几乎任何分子结构的快速而简单的方法。Rizzoli说,开发这项技术的部分动机是扩大尖端光学显微镜的可及性。ONE显微镜技术简单,适用于20世纪90年代已过时的荧光显微镜。位于埃及的开罗德国大学制药技术专家SalmaTammam计划今年夏天派一名博士生学习这项技术。她的实验室正在研究纳米颗粒如何在细胞中移动,他们想要看到粒子及其运载物的细节。但与低收入和中等收入国家的许多研究人员一样,他们无法获得昂贵的超高分辨率显微镜。德国莱布尼茨分子药理学中心生物学家NoaLipstein说,扩大超高分辨率显微镜的应用范围对资金雄厚机构的科学家也很重要。她最近成立了一个独立的研究小组,并将ONE显微镜应用于对神经突触细节的研究。相关论文信息:https://doi.org/10.1101/2022.08.03.502284《中国科学报》(2023-04-19第2版 国际)...PC版:https://www.cnbeta.com.tw/articles/soft/1355601.htm手机版:https://m.cnbeta.com.tw/view/1355601.htm

封面图片

量子显微镜利用"诡异"的物理学将图像分辨率提高一倍

量子显微镜利用"诡异"的物理学将图像分辨率提高一倍但是有一个问题。波长越短,能量越高,所以当达到这些尺度时,用于对样品进行成像的光子正在破坏甚至摧毁它们。但是,由于量子物理学的诡异特性,加州理工学院团队的量子显微镜解决了这个问题。纠缠是一种奇怪的现象,在这种现象中,两个或更多的粒子可以彼此纠缠在一起,以至于没有另一个粒子就无法描述。在这种情况下,科学家们将两个光子纠缠成一个单元,称为双光子,它的行为就像一个能量较低、波长为一半的单光子。"细胞不喜欢紫外线,"这项研究的首席研究员LihongWang说。"但如果我们能用400纳米的光给细胞成像,并达到200纳米光的效果,也就是紫外线,细胞就不会有什么意见,而且我们得到了紫外线的分辨率。"加州理工学院的量子显微镜示意图要做到这一点需要完成精心的光学设定。首先,激光穿过一种特殊的晶体,将一些光子转化为双光子。然后,这些纠缠在一起的光子对被分割开来,并被送入两条平行的路径--一个光子通过被成像的样品,而另一个则避开它。之后,这些光子被送到一个检测器,在那里可以分析数据并建立一个图像。该团队的实验表明,该技术可以在不破坏细胞的情况下对其进行成像,并且可以通过显微镜下的"眼睛测试",即显示微米级的不同宽度的线条,以检查仪器对它们的区分程度。果然,量子显微镜技术表现出的分辨率是使用普通光子进行的"经典"测试的两倍。这比其他量子显微镜实验要好得多,这些实验只设法将分辨率提高了约35%。使用普通光子的"经典"(左)成像和使用纠缠双光子的"量子"(右)成像中的图像质量比较。研究小组说,一个缺点是,双光子的产生非常少--晶体在一百万个光子中会吐出大约一个双光子。值得庆幸的是,像这样的激光器在每个脉冲中产生的光子数量是惊人的。当然,仍有改进的余地。研究人员说,未来的工作可以将更多的光子纠缠在一起,每一个光子都会减少波长并提高分辨率。然而,那里的问题是,这也降低了每次纠缠的本已很低的概率。这项研究发表在《自然通讯》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1357951.htm手机版:https://m.cnbeta.com.tw/view/1357951.htm

封面图片

超分辨率显微镜揭示冠状病毒的一系列“隐藏属性”

超分辨率显微镜揭示冠状病毒的一系列“隐藏属性”带有穗状蛋白(青色)的冠状病毒(圆形颗粒)感染携带零星ACE-2受体(粉色)的宿主细胞。膜融合并释放病毒成分(紫色)后。(紫色)被释放出来。例如,病毒不会用几种表面蛋白同时与要感染的细胞的几种受体结合。这个假设以前一直是解释病毒如何增加感染性的一种尝试。与单个受体的结合也不会导致随后更多的受体与病毒的对接。维尔茨堡研究小组现在提供了证据,证明单一病毒与单一受体结合,为高效感染打开了大门。SARS-CoV-2在其表面平均携带20-40个尖峰蛋白。通过这些,它与目标细胞膜上的ACE2受体结合,例如在人类的鼻子和喉咙。当这些受体被抗体阻断时,该细胞就不能再被感染。Sauer解释说:"这表明,病毒与ACE2受体的结合是感染的决定性步骤。"到目前为止,使ACE2受体及其与病毒尖峰蛋白的相互作用在显微镜下可见还不可能。因此,很多事情都有待推测--例如病毒是否与多个尖峰的受体结合以促进进入细胞。也有人认为,受体是以成对或三组的形式存在于膜中,而,这样它们可以更有效地与三聚体的尖峰蛋白结合。或者说,它们只是在与一个尖峰蛋白结合后才结合成这样的群体。这两种情况都强烈依赖于膜中ACE2受体的密度。超分辨率显微镜使问题变得清晰维尔茨堡的研究人员希望阐明这一谜团:他们用染料标记了抗体,以使受体可见并可计数。为此,他们使用了作为SARS-CoV感染模型系统的各种细胞系,以及MarkusSauer研究小组开发的单分子敏感超分辨率显微镜方法dSTORM。结果发现,例如经常被用作SARS-CoV-2感染模型的Vero细胞,每平方微米的细胞膜上只有一到两个ACE2受体。"这是非常少的,"Sauer补充说:"在其他膜受体中,这个数字往往在30到80之间。""相邻的ACE2受体之间的平均距离约为500纳米。"Backes说:"因此,它比一个病毒颗粒大得多,后者的测量值只有100纳米。她补充说,因此,一个具有多个尖峰蛋白的病毒粒子能够同时与多个受体结合的想法是非常不可能的。"ACE2受体总是单一的下面是一个公开的问题:受体是否也以成对或三组的形式存在于膜中?"不,它们只在那里单一出现。"鲁道夫-维尔乔夫中心(RudolfVirchowCentre)的研究小组组长Beliu说:"即使有病毒尖峰蛋白与它们结合,也会保持这种状态。对于感染来说,如果单个尖峰蛋白与单个受体结合就足够了。"通过这些结果,JMU团队能够推翻许多关于病毒颗粒与多个ACE2受体相互作用的原始假设。它还表明,正如预期的那样,ACE2表达较高的宿主细胞更容易被感染。然而,膜的脂质成分和其他因素也影响感染效率。下一步要做什么?JMU团队希望尽可能多地收集关于冠状病毒的细胞进入机制的详细知识,以便更好地了解感染过程。这最终可能有助于更好地预防和开发出更好的抗COVID-19的药物。接下来,维尔茨堡的研究人员希望用高分辨率的光片显微镜来分析进入机制。...PC版:https://www.cnbeta.com.tw/articles/soft/1366035.htm手机版:https://m.cnbeta.com.tw/view/1366035.htm

封面图片

BonFIRE开启显微镜设备的新篇章 以惊人的细节揭示生命的分子多样性

BonFIRE开启显微镜设备的新篇章以惊人的细节揭示生命的分子多样性BonFIRE技术在发表于《自然-光子学》(NaturePhotonics)杂志上的一篇论文中,加州理工学院化学助理教授、传统医学研究所研究员LuWei实验室的研究人员展示了他们称之为"键选择荧光检测红外激发光谱显微镜"(BonFIRE)的技术。BonFIRE将两种显微镜技术合二为一,具有更高的选择性和灵敏度,使研究人员能够在前所未有的单分子水平上可视化生物过程,并从分子角度了解生物机制。研究报告的合著者、化学工程专业研究生DongkwanLee说:"有了我们的新型显微镜,我们现在可以用振动对比来观察单分子,而这是现有技术难以做到的。"博士后学者HaominWang(左)和研究生DongkwanLee(右)演示BonFIRE显微设备的操作。资料来源:加州理工学院BonFIRE背后的技术BonFIRE涉及的一项技术是荧光显微镜,该技术通过在分子和其他微观结构上标记荧光化学标记,使其在成像时发光,从而对其进行成像。另一种技术是振动显微镜技术,它利用分子原子间结合键的自然振动。要成像的样本会受到光的轰击,这里指的是红外光。这种轰击会导致材料分子中的键发生振动,从而可以识别它们的类型。例如,三键的振动与单键的振动"听起来"不同,与另一个碳原子结合的碳原子的振动与与氮原子结合的碳原子的振动听起来不同。这与训练有素的吉他手通过聆听吉他发出的音色,就能分辨出吉他上的哪根弦被拨动以及它是由什么材料制成的并无二致。化学助理教授兼遗产医学研究所研究员LuWei。资料来源:加州理工学院优势结合Wei说,荧光显微镜允许研究人员观察单个分子,但不能提供丰富的化学信息。另一方面,振动显微镜虽然能提供丰富的化学信息,但只有当被成像的分子大量存在时才能发挥作用。BonFIRE通过将振动与荧光耦合,有效地结合了这两种技术的优势,从而解决了这些局限性。整个过程是这样的:首先用荧光染料对样品进行染色,荧光染料会与要成像的分子结合。然后用红外光脉冲轰击样品,调整红外光的频率以激发染料中的特定键。一旦该键被该光的一个光子激发,第二个能量更高的光脉冲就会照射到该键上,并激发它发出显微镜可以检测到的荧光。这样,显微镜就能对整个细胞或单个分子进行成像。未来展望这项研究的合著者、化学博士后学者助理研究员王浩敏说:"我们对这种光谱学过程非常着迷,很高兴能将其转化为现代生物成像的新型工具。在过去的三年里,我们一直在冒险建造我们的定制BonFIRE显微镜,并对这一光谱过程有了更深入的了解,这进一步帮助我们优化了设置中的每个组件,从而达到了现在的性能。"在论文中,科学家们还展示了用"颜色"标记生物分子的能力,使它们能够相互区分。这是通过使用组成染料分子的原子的几种同位素来实现的。(同位素是一种元素的不同形式,由于其原子核的中子数目有多有少,因此原子量也不同)。它们的键振动频率会随着原子质量的增减而变化。Wei说:"传统的荧光显微镜一次只能分辨出少数几种颜色,而BonFIRE则不同,它利用红外光激发不同的化学键,产生彩虹般的振动颜色。可以同时对同一样本中的许多不同目标进行标记和成像,以令人惊叹的细节揭示生命分子的多样性。我们希望能在不久的将来展示活细胞中数十种颜色的成像能力。"...PC版:https://www.cnbeta.com.tw/articles/soft/1378319.htm手机版:https://m.cnbeta.com.tw/view/1378319.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人