新研发的机器微手指可让科学家亲身感知来自微小物体的运动

新研发的机器微手指可让科学家亲身感知来自微小物体的运动其中五个传感器被整合到一个设备中,搭建出一个具有柔软、灵活手指的机器人手,每个手指内都有一个类似气球的气动驱动器,以及一个液态金属应变仪。用户在自己的手指上佩戴特殊的传感器,测量他们手指弯曲运动的速度、程度和方向。这些数据会实时转发到相应的微指上,使它们相应地弯曲。如果它们压向一个物体,应变片就会测量该物体的力量。一张图说明了微指如何被用来测量球鼠妇腿部的反作用力在对该技术的测试中,微指被用来测量一只活的球鼠妇(即我们小时候玩的西瓜虫)的腿的反作用力,这只虫被一个抽吸工具倒扣着,测量到它的腿力约为10毫牛顿,这与之前计算的估计值一致。科学家们希望这种技术进一步发展,不仅可以用于昆虫研究,还可以用于需要小规模"动手"方法的其他应用。首席科学家SatoshiKonishi教授说:"通过我们的应变感应微指,我们能够直接测量药虫的腿和躯干的推动运动和力量--这是以前不可能实现的。我们预计,我们的结果将让微指与昆虫互动的进一步技术发展,从而带来更小规模的人类与环境互动"。有关这项研究的论文最近发表在《科学报告》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1333261.htm手机版:https://m.cnbeta.com.tw/view/1333261.htm

相关推荐

封面图片

科学家利用机器学习识别数以千计的新宇宙物体

科学家利用机器学习识别数以千计的新宇宙物体天文学正在经历一场变革,因为来自数百万天体的大量天文数据可以轻易获得。这是由于大规模的调查和利用一流的天文观测站的细致观测,再加上开放数据的政策。毋庸置疑,这些数据对于许多发现和对宇宙的新认识具有巨大潜力。然而,手动探索所有这些天体的数据是不现实的,自动机器学习技术对于从这些数据中提取信息至关重要。但这种技术在天文数据中的应用仍然非常有限,而且处于初步阶段。在此背景下,TIFR-IIST团队将机器学习技术应用于美国钱德拉空间观测站在X射线下观测的数十万个宇宙物体。这表明了一种新的和热门的技术进步如何能够帮助和彻底改变基础和基本的科学研究。该小组将这些技术应用于大约277000个释放X射线的物体,其中大部分物体的性质是未知的。对未知物体的性质进行分类,相当于发现特定类别的物体。因此,这项研究让研究人员可靠地发现了成千上万的宇宙天体的类别,如黑洞、中子星、白矮星、恒星等,这为天文学界进一步详细研究许多有趣的新天体提供了巨大的机会。这项合作研究对于建立将新的机器学习技术应用于天文学基础研究的最先进能力也很重要,这对于科学地利用当前和即将到来的观测站的数据至关重要。...PC版:https://www.cnbeta.com.tw/articles/soft/1349399.htm手机版:https://m.cnbeta.com.tw/view/1349399.htm

封面图片

科学家用纳米粒子"剥开"极微小事物世界的秘密

科学家用纳米粒子"剥开"极微小事物世界的秘密发表在《科学进展》(ScienceAdvances)杂志上的这一发现为医学科学领域带来了巨大的潜力。它提出了一种具有成本效益和高效的方法来检查那些太小而无法被显微镜看到的物体。这项研究还可以通过加强计算机芯片生产的质量控制过程对半导体行业产生积极影响。澳大利亚国立大学的技术使用精心设计的纳米粒子,将照相机和其他技术看到的光的频率提高了七倍。研究人员说,光的频率能提高到多高是"没有限制的"。频率越高,我们使用该光源所能看到的物体就越小。这项技术只需要一个纳米粒子就能工作,它可以被应用到显微镜中,帮助科学家以传统显微镜10倍的分辨率放大到超小事物的世界。这将使研究人员能够研究那些本来太小而无法看到的物体,如细胞的内部结构和单个病毒。能够分析这样的小物体可以帮助科学家更好地理解和对抗某些疾病和健康状况。"传统的显微镜只能研究大于约一千万分之一米的物体。然而,包括医学领域在内的一系列部门对能够分析小到十亿分之一米的物体的需求越来越大,"主要作者、来自澳大利亚国立大学物理研究学院和阿德莱德大学的AnastasiiaZalogina博士说。研究人员说,ANU开发的纳米技术可以帮助创建新一代的显微镜,可以产生更详细的图像。"想要对极小的纳米级物体产生高倍放大的图像的科学家们不能使用传统的光学显微镜。相反,他们必须依靠超分辨率显微镜技术或使用电子显微镜来研究这些微小物体,"Zalogina博士说。"但是这种技术很慢,而且技术非常昂贵,往往要花费超过一百万美元。电子显微镜的另一个缺点是它可能会损坏正在分析的精细样品,而基于光的显微镜则可以缓解这一问题。"研究人员认为是彩虹的不同颜色的光束是以不同频率振荡的电磁波。我们所看到的红色是我们的眼睛所能检测到的最低频率。人眼无法看到的更低频率被称为红外线。紫色具有我们能看到的最高的光频率,紫外线的频率甚至更高,但人眼却看不见。虽然我们的眼睛无法检测到红外线和紫外线,但我们有可能利用相机和其他技术"看到"它。同样来自ANU的共同作者SergeyKruk博士说,研究人员对实现非常高频率的光感兴趣,也被称为'极紫外光'。"与使用红光相比,用紫光我们可以看到更小的东西。而利用极紫外光源,我们可以看到今天传统显微镜所能看到的东西,"Kruk博士说。澳大利亚国立大学的技术也可用于半导体行业,作为一种质量控制措施,以确保简化的制造过程。"算机芯片由非常微小的部件组成,其特征尺寸几乎小到十亿分之一米。在芯片生产过程中,制造商使用微小的极紫外光源来实时监测这一过程,以便尽早诊断出任何问题,这将是有益的。这样一来,制造商就可以在坏的批次的芯片上节省资源和时间,从而提高芯片制造的产量。据估计,计算机芯片制造的收益率提高一个百分点,就会转化为20亿美元的节约。澳大利亚蓬勃发展的光学和光子学产业由近500家公司代表,占约43亿美元的经济活动,使我们的高科技生态系统有能力采用新型光源,以进入纳米技术产业和研究的新全球市场。...PC版:https://www.cnbeta.com.tw/articles/soft/1358825.htm手机版:https://m.cnbeta.com.tw/view/1358825.htm

封面图片

物理学新突破:科学家测量到半粒沙的引力

物理学新突破:科学家测量到半粒沙的引力如果存在量子引力理论,那么线索就会隐藏在最微小的尺度上,隐藏在原子和粒子之间的引力相互作用中。问题是,这些微小的相互作用会被地球巨大的引力影响所冲淡。这就好比在空转的喷气发动机下试图记录一只虫子的脚步声。如果想测量粒子之间的电磁作用,可以设置一个盒子来阻挡所有外界干扰,但却无法在重力作用下做到这一点。但现在,科学家们开发出了一种新型实验,可以抵消地球的拉力,揭示小物体之间的引力相互作用。实验的诀窍是将一个磁性粒子悬浮在一个超导陷阱中,使其与外界电磁、热量和振动完全隔离,然后将一个2.4千克(5.3磅)重的砝码放在一个轮子上摇摆过去,观察粒子是否移动。果然,研究小组在这一粒子上测出了微弱的引力,其引力仅为30阿托尼顿(aN),而这一引力的作用点恰好与较大砝码最靠近它的时间点相对应。它的重量仅为0.43毫克,是迄今为止测量到的最小重力质量。之前的记录是90毫克--大约是一只瓢虫的质量。最近的另一项研究测量了由于重力差异而导致的时间流逝在仅1毫米的微小距离上的差异。这一微不足道的测量,让世界更接近量子领域。如果可以在如此微小的物体上测量到引力,科学家们也许终于可以开始将这种奇怪的力量纳入我们的宇宙模型,并建立一个正确的万物理论。该研究的主要作者蒂姆-福克斯(TimFuchs)说:"一个世纪以来,科学家们一直试图理解引力和量子力学是如何协同工作的,但都以失败告终。现在我们成功地测量到了有记录以来质量最小的引力信号,这意味着我们离最终实现引力和量子力学如何协同工作又近了一步。从这里开始,我们将利用这种技术缩小信号源的规模,直到我们达到双方的量子世界。通过了解量子引力,我们可以解开宇宙中的一些谜团--比如宇宙是如何开始的,黑洞内部发生了什么,或者将所有力量统一到一个大理论中。"这项研究发表在《科学进展》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1421191.htm手机版:https://m.cnbeta.com.tw/view/1421191.htm

封面图片

科学家们展示表观遗传记忆在多代生物体之间的传递

科学家们展示表观遗传记忆在多代生物体之间的传递在不改变DNA中的遗传密码的情况下,表观遗传学的修改可以改变基因的表达方式,影响一个生物体的健康和发展。基因表达的这种变化可以被遗传,这曾经是一个激进的想法。现在,它背后有越来越多的证据,但涉及的机制仍然不为人所知。加州大学圣克鲁兹分校的科学家们在一项新研究中表明,一种常见的表观遗传修饰类型不仅可以通过精子传给后代,还可以传给下一代(“孙子”)。这被称为“跨代表观遗传”。PC版:https://www.cnbeta.com/articles/soft/1323897.htm手机版:https://m.cnbeta.com/view/1323897.htm

封面图片

科学家发现现有疟疾诊断过程存在"令人担忧"的缺陷

科学家发现现有疟疾诊断过程存在"令人担忧"的缺陷这项研究最近发表在《寄生虫学趋势》(TrendsinParasitology)杂志上。研究人员创建了一个感染动态数学模型,以确定以往计算机模型中的血液采样偏差和错误推断导致了大量的高估。论文通讯作者、农业与生命科学学院生态学与进化生物学助理教授梅根-格雷斯查尔(MeganGreischar)说:"无法准确测量这些比率令人担忧。"弗吉尼亚理工大学数学副教授LaurenChilds是该论文的共同作者,他介绍说:"我们曾经有一个非常简单的模型来推断乘法率,但这个模型行不通,所以现在我们知道我们需要更强大的模型。她说,这项研究解释了精确测量繁殖率的问题是如何产生的。"一些候选疟疾疫苗是在寄生虫在血液中复制的生命周期阶段发挥作用的,因此了解寄生虫的繁殖率是评估疫苗疗效的关键。受感染的蚊子通过血餐将疟原虫传给人类宿主。寄生虫首先在肝细胞中繁殖,然后进入红细胞。在那里,寄生虫在红细胞内同步复制,并迸发到血液中,杀死红细胞。然后,子寄生虫继续下一个循环,侵入新的红细胞。这种循环大约每48小时重复一次。在测量繁殖率时,临床医生会从受感染的病人身上采集血液样本,并计算观察到的寄生虫数量。时间选择很重要,因为从红细胞中迸发出来的幼小寄生虫处于生命周期的早期,很容易被发现。但随着年龄的增长,在生命周期的后期,寄生虫会变得粘稠,附着在血管壁上,无法循环。由于这种循环会不断重复,采样的时间就决定了血液中能观察到的数量是多是少。在可观察到寄生虫数量较少的周期后期采集样本,与在幼寄生虫数量较多的周期早期采集样本相比,取样偏差会增加。以前用于估算寄生虫繁殖率的模型试图通过推断寄生虫群生命周期后期可能存在的寄生虫数量来纠正这种取样偏差,因为这时无法直接观察到寄生虫。这项研究表明,这些方法不足以确定寄生虫的实际繁殖速度。之前发表的研究测量了一种人类疟原虫(恶性疟原虫)在人工培养的一个48小时复制周期内产生的最大后代数量。格雷斯查尔说:"它们最多只能繁殖32倍,这已经相当大了,这意味着单个寄生虫最多能产生32个子代寄生虫,中位数约为15到18个。"利用数学模型,结合疟疾感染者的现代和历史数据,研究人员能够确定,以前的寄生虫数量模型所做的推断导致寄生虫繁殖率比可能的繁殖率高出几个数量级。"我们看到了千倍的增长,"格雷斯查尔说。"这意味着寄生虫从一个红细胞中反复制造出超过1000个寄生虫,这不符合我们对这些寄生虫生物学的理解。"现在,Greischar和Childs已经发现了问题所在,接下来的工作可能包括开发推断寄生虫种群隐藏部分的技术,以便准确计算它们的繁殖率。...PC版:https://www.cnbeta.com.tw/articles/soft/1378079.htm手机版:https://m.cnbeta.com.tw/view/1378079.htm

封面图片

抗击疟疾的进展:科学家研发出遏制疟原虫蔓延的新药物

抗击疟疾的进展:科学家研发出遏制疟原虫蔓延的新药物人类感染的疟疾寄生虫恶性疟原虫(绿色)被描述为从人类红血球(红色)中爆发出来。八个性成熟的寄生虫(绿色)从人体细胞(红色)中出现,其复制的DNA显示为蓝色。资料来源:此图片由SabrinaYahiya博士和JakeBaum教授提供。因此,开发新的抗疟疾药物是一个紧迫的问题。一个关键的目标是阻止寄生虫从人类向蚊子的传播,这取决于其生命周期的性阶段。鲍姆实验室与英国伦敦帝国学院的研究人员合作,先前发现了一类属于磺胺类的新型高效抗疟化合物。这些化合物仅在寄生虫处于其生命周期的特定性阶段时才会杀死它,迅速阻止它首先感染蚊子,因此可以防止任何后续的人类感染。在新的《疾病模型与机制》一文中,鲍姆及其同事确切地探讨了这些化合物是如何工作的,这是在开发这些化合物以在病人身上进行测试之前的一个重要步骤。这项工作的主要作者SabrinaYahiya博士评论说:"如果我们希望达到在全世界范围内消除疟疾的目标,针对寄生虫从人到蚊子再到人的传播是至关重要的。如果只治疗一个有症状的病人,你就解决了他们的症状,却忽略了疟疾的传播问题。然而,通过限制传播,就可以从根本上遏制疟疾在人群中的传播。"该团队首先在实验室中培养感染了疟疾寄生虫的人类红血球,然后操纵寄生虫进入它们的性成熟阶段。然后,科学家们用一种磺胺化合物处理这些寄生虫,以找出哪些寄生虫的蛋白质被传输阻断化合物锁定。为此,科学家们应用了"点击化学",一种赢得了2022年诺贝尔化学奖的方法,在磺胺化合物上附加一个化学标签。"然后这个标签将标记与它们接触的任何寄生虫蛋白质。这项技术确定了一种名为Pfs16的寄生虫蛋白与药物形成最强的结合。有趣的是,Pfs16对疟疾寄生虫的性转换非常重要。该小组随后进行了更多的实验,以确认磺胺类药物与Pfs16结合,而且重要的是阻断其功能。然后,科学家们希望确定寄生虫的有性阶段中被磺胺类药物锁定的确切点。疟疾寄生虫在人类血液中变成雄性或雌性形式后可以传播给蚊子,一旦进入蚊子的肠道,就会发展到一个更成熟的性阶段。这些成熟的雄性和雌性寄生虫类似于人类的卵子和精子,然后融合以实现有性繁殖。新繁殖的寄生虫经过进一步的成熟,然后由蚊子转移,感染更多的人。通常发生在蚊子肠道中的性成熟过程可以在实验室中被人工激活,总共大约只需要10-25分钟时间。作者发现,如果在性成熟过程的前6分钟内向寄生虫施用磺胺化合物,就能特异性地针对雄性寄生虫,并独特地抑制其性成熟,这也是寄生虫蛋白靶点Pfs16在阻止雄性寄生虫成熟方面发挥重要作用的时间。通过确定该化合物的靶点和活性窗口,这项工作提供了对寄生虫生命周期阶段的更精确的理解,在这一阶段该类磺胺类药物是有效的。它还强调了这些化合物通过靶向重要的寄生虫蛋白Pfs16,快速阻断性成熟的独特能力,并进而阻断了疟疾寄生虫的传播。总的来说,Baum及其同事已经确定了这一类新的抗疟药物是如何阻断寄生虫达到性成熟的,从而阻断它们通过蚊子叮咬从人到人的传播。这是开发有效的新药以减少全世界大量新的疟疾病例的重要一步。一旦得到彻底开发和测试,这些化合物可以与现有的治疗症状的疗法一起给疟疾患者使用,以防止寄生虫传播给更多的人。鲍姆教授介绍说:"这类磺胺类药物具有强大的阻断寄生虫性成熟的独特能力,几乎是立竿见影的,这使得向蚊子直接投放化合物成为非常有吸引力的替代管理策略。这种令人兴奋的替代策略可以通过在蚊帐或糖饵上涂抹这些化合物来实现。"更多的研究正在进行中,以探索和完善这类磺胺类药物的活性,用于人类或直接用于蚊子,但尽管如此,这项研究扩大了可用于抗击疟疾的策略的范围。...PC版:https://www.cnbeta.com.tw/articles/soft/1352351.htm手机版:https://m.cnbeta.com.tw/view/1352351.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人