科学家发现现有疟疾诊断过程存在"令人担忧"的缺陷

科学家发现现有疟疾诊断过程存在"令人担忧"的缺陷这项研究最近发表在《寄生虫学趋势》(TrendsinParasitology)杂志上。研究人员创建了一个感染动态数学模型,以确定以往计算机模型中的血液采样偏差和错误推断导致了大量的高估。论文通讯作者、农业与生命科学学院生态学与进化生物学助理教授梅根-格雷斯查尔(MeganGreischar)说:"无法准确测量这些比率令人担忧。"弗吉尼亚理工大学数学副教授LaurenChilds是该论文的共同作者,他介绍说:"我们曾经有一个非常简单的模型来推断乘法率,但这个模型行不通,所以现在我们知道我们需要更强大的模型。她说,这项研究解释了精确测量繁殖率的问题是如何产生的。"一些候选疟疾疫苗是在寄生虫在血液中复制的生命周期阶段发挥作用的,因此了解寄生虫的繁殖率是评估疫苗疗效的关键。受感染的蚊子通过血餐将疟原虫传给人类宿主。寄生虫首先在肝细胞中繁殖,然后进入红细胞。在那里,寄生虫在红细胞内同步复制,并迸发到血液中,杀死红细胞。然后,子寄生虫继续下一个循环,侵入新的红细胞。这种循环大约每48小时重复一次。在测量繁殖率时,临床医生会从受感染的病人身上采集血液样本,并计算观察到的寄生虫数量。时间选择很重要,因为从红细胞中迸发出来的幼小寄生虫处于生命周期的早期,很容易被发现。但随着年龄的增长,在生命周期的后期,寄生虫会变得粘稠,附着在血管壁上,无法循环。由于这种循环会不断重复,采样的时间就决定了血液中能观察到的数量是多是少。在可观察到寄生虫数量较少的周期后期采集样本,与在幼寄生虫数量较多的周期早期采集样本相比,取样偏差会增加。以前用于估算寄生虫繁殖率的模型试图通过推断寄生虫群生命周期后期可能存在的寄生虫数量来纠正这种取样偏差,因为这时无法直接观察到寄生虫。这项研究表明,这些方法不足以确定寄生虫的实际繁殖速度。之前发表的研究测量了一种人类疟原虫(恶性疟原虫)在人工培养的一个48小时复制周期内产生的最大后代数量。格雷斯查尔说:"它们最多只能繁殖32倍,这已经相当大了,这意味着单个寄生虫最多能产生32个子代寄生虫,中位数约为15到18个。"利用数学模型,结合疟疾感染者的现代和历史数据,研究人员能够确定,以前的寄生虫数量模型所做的推断导致寄生虫繁殖率比可能的繁殖率高出几个数量级。"我们看到了千倍的增长,"格雷斯查尔说。"这意味着寄生虫从一个红细胞中反复制造出超过1000个寄生虫,这不符合我们对这些寄生虫生物学的理解。"现在,Greischar和Childs已经发现了问题所在,接下来的工作可能包括开发推断寄生虫种群隐藏部分的技术,以便准确计算它们的繁殖率。...PC版:https://www.cnbeta.com.tw/articles/soft/1378079.htm手机版:https://m.cnbeta.com.tw/view/1378079.htm

相关推荐

封面图片

抗击疟疾的进展:科学家研发出遏制疟原虫蔓延的新药物

抗击疟疾的进展:科学家研发出遏制疟原虫蔓延的新药物人类感染的疟疾寄生虫恶性疟原虫(绿色)被描述为从人类红血球(红色)中爆发出来。八个性成熟的寄生虫(绿色)从人体细胞(红色)中出现,其复制的DNA显示为蓝色。资料来源:此图片由SabrinaYahiya博士和JakeBaum教授提供。因此,开发新的抗疟疾药物是一个紧迫的问题。一个关键的目标是阻止寄生虫从人类向蚊子的传播,这取决于其生命周期的性阶段。鲍姆实验室与英国伦敦帝国学院的研究人员合作,先前发现了一类属于磺胺类的新型高效抗疟化合物。这些化合物仅在寄生虫处于其生命周期的特定性阶段时才会杀死它,迅速阻止它首先感染蚊子,因此可以防止任何后续的人类感染。在新的《疾病模型与机制》一文中,鲍姆及其同事确切地探讨了这些化合物是如何工作的,这是在开发这些化合物以在病人身上进行测试之前的一个重要步骤。这项工作的主要作者SabrinaYahiya博士评论说:"如果我们希望达到在全世界范围内消除疟疾的目标,针对寄生虫从人到蚊子再到人的传播是至关重要的。如果只治疗一个有症状的病人,你就解决了他们的症状,却忽略了疟疾的传播问题。然而,通过限制传播,就可以从根本上遏制疟疾在人群中的传播。"该团队首先在实验室中培养感染了疟疾寄生虫的人类红血球,然后操纵寄生虫进入它们的性成熟阶段。然后,科学家们用一种磺胺化合物处理这些寄生虫,以找出哪些寄生虫的蛋白质被传输阻断化合物锁定。为此,科学家们应用了"点击化学",一种赢得了2022年诺贝尔化学奖的方法,在磺胺化合物上附加一个化学标签。"然后这个标签将标记与它们接触的任何寄生虫蛋白质。这项技术确定了一种名为Pfs16的寄生虫蛋白与药物形成最强的结合。有趣的是,Pfs16对疟疾寄生虫的性转换非常重要。该小组随后进行了更多的实验,以确认磺胺类药物与Pfs16结合,而且重要的是阻断其功能。然后,科学家们希望确定寄生虫的有性阶段中被磺胺类药物锁定的确切点。疟疾寄生虫在人类血液中变成雄性或雌性形式后可以传播给蚊子,一旦进入蚊子的肠道,就会发展到一个更成熟的性阶段。这些成熟的雄性和雌性寄生虫类似于人类的卵子和精子,然后融合以实现有性繁殖。新繁殖的寄生虫经过进一步的成熟,然后由蚊子转移,感染更多的人。通常发生在蚊子肠道中的性成熟过程可以在实验室中被人工激活,总共大约只需要10-25分钟时间。作者发现,如果在性成熟过程的前6分钟内向寄生虫施用磺胺化合物,就能特异性地针对雄性寄生虫,并独特地抑制其性成熟,这也是寄生虫蛋白靶点Pfs16在阻止雄性寄生虫成熟方面发挥重要作用的时间。通过确定该化合物的靶点和活性窗口,这项工作提供了对寄生虫生命周期阶段的更精确的理解,在这一阶段该类磺胺类药物是有效的。它还强调了这些化合物通过靶向重要的寄生虫蛋白Pfs16,快速阻断性成熟的独特能力,并进而阻断了疟疾寄生虫的传播。总的来说,Baum及其同事已经确定了这一类新的抗疟药物是如何阻断寄生虫达到性成熟的,从而阻断它们通过蚊子叮咬从人到人的传播。这是开发有效的新药以减少全世界大量新的疟疾病例的重要一步。一旦得到彻底开发和测试,这些化合物可以与现有的治疗症状的疗法一起给疟疾患者使用,以防止寄生虫传播给更多的人。鲍姆教授介绍说:"这类磺胺类药物具有强大的阻断寄生虫性成熟的独特能力,几乎是立竿见影的,这使得向蚊子直接投放化合物成为非常有吸引力的替代管理策略。这种令人兴奋的替代策略可以通过在蚊帐或糖饵上涂抹这些化合物来实现。"更多的研究正在进行中,以探索和完善这类磺胺类药物的活性,用于人类或直接用于蚊子,但尽管如此,这项研究扩大了可用于抗击疟疾的策略的范围。...PC版:https://www.cnbeta.com.tw/articles/soft/1352351.htm手机版:https://m.cnbeta.com.tw/view/1352351.htm

封面图片

将细胞变成 "僵尸":科学家发现了弓形虫感染30%人类的秘密

将细胞变成"僵尸":科学家发现了弓形虫感染30%人类的秘密为了对抗感染,免疫细胞在体内的各种作用受到了非常严格的监管。弓形虫如何感染如此多的人和动物物种并迅速传播,长期以来一直是科学家的一个谜。斯德哥尔摩大学Wenner-Gren研究所分子生物科学系的研究员ArnetenHoeve说:"我们现在发现了一种蛋白质,寄生虫用它来重新编程免疫系统。"根据该研究,寄生虫将蛋白质注入免疫细胞的细胞核,改变细胞的身份。免疫细胞被寄生虫欺骗,认为它们是一种不同的细胞。这改变了免疫细胞的基因表达和行为。弓形虫导致本不应该在体内移动的受感染细胞迅速移动,使寄生虫传播到不同的器官。被弓形虫寄生虫感染的多个免疫细胞(红色)。细胞的表面被染成绿色,细胞核为蓝色。资料来源:AntonioBarragan弓形虫被描述为将免疫细胞转化为特洛伊木马或游荡的"僵尸",传播寄生虫。最近发表的研究为这一现象提供了一个分子解释,并证明了该寄生虫在传播过程中的针对性比以前认为的要强很多。"令人惊讶的是,寄生虫以如此巧妙的方式成功地劫持了免疫细胞的身份。我们相信,这些发现可以解释为什么弓形虫在感染人类和动物时在体内的传播如此高效,"领导这项研究的安东尼奥-巴拉甘教授说,这项研究是与法国和美国的研究人员合作进行的。有关寄生虫弓形虫和弓形虫病的信息弓形虫病可能是全球人类中最常见的寄生虫感染。弓形虫也感染许多动物物种(人畜共患病),包括我们的宠物。世界卫生组织估计,世界上至少有30%的人类是这种寄生虫的携带者。研究表明,15-20%的瑞典人口携带这种寄生虫(绝大多数人都不知道)。其他几个欧洲国家的发病率更高。猫科动物(不仅仅是家猫),在弓形虫的生命周期中有一个特殊的位置:只有在它们的肠道中才会发生有性繁殖。在其他宿主中,例如人类、狗或鸟类,繁殖是通过寄生虫的分裂进行的。弓形虫通过食物和与猫的接触传播。在自然界中,寄生虫优先从啮齿动物传播到猫,再传播到啮齿动物,如此循环。寄生虫在啮齿动物的大脑中"沉睡",当猫吃了老鼠后,它们在猫的肠道中繁殖并通过粪便排出。寄生虫最终出现在植被中,当啮齿动物吃了植被就会被感染。人类通过食用肉类或通过接触猫,特别是猫的粪便而被感染。这种寄生虫会导致弓形虫病。当一个人第一次被感染时,会出现类似流感的轻微症状,可能类似感冒或流感。在第一次感染阶段之后,寄生虫在大脑中过渡到"睡眠"阶段,并开始慢性无声感染,可能持续几十年或终身。慢性感染通常不会引起健康人的症状。然而,弓形虫可以在免疫系统较弱的人(HIV、器官移植受体、化疗后)中引起威胁生命的脑部感染(脑炎),并在怀孕期间对胎儿造成危险。眼睛感染可能发生在其他健康人身上。...PC版:https://www.cnbeta.com.tw/articles/soft/1335405.htm手机版:https://m.cnbeta.com.tw/view/1335405.htm

封面图片

坏消息:距离疟疾的消除可能比科学家想象的更遥远

坏消息:距离疟疾的消除可能比科学家想象的更遥远血液特质被认为可以天生免疫该疾病的人仍然被感染了,现在的问题是:怎么会这样?几十年来,致力于寻找疟疾治疗方法的研究人员相信,他们已经找到了一种似乎可以抵御疟疾的血型。然而,最近发表在《细胞宿主与微生物》(CellHost&Microbe)杂志上的一篇文章揭示,即使是具有这种所谓保护性血型的人也会受到感染。现在的问题是,他们是如何被感染的?凯斯西储大学医学院病理学教授、该研究的资深作者彼得-齐默尔曼(PeterZimmerman)说:"这可能意味着,与这种血型有关的特定基因突变并不能完全阻止疟疾,或者疟原虫可能找到了另一种进入血细胞的方法。这是一件大事,因为它可能会改变我们试图摆脱这种疟原虫的方法。"这项研究的共同研究员、病理学教授克里斯托弗-金(ChristopherKing)说:"这种叫做间日疟原虫的疟疾寄生虫曾经在俄亥俄州东北部很常见。今年夏天,它在美国佛罗里达州和德克萨斯州境内传播,这是20年来第一次。我们已经知道,随着气候变化以及来自疟疾流行地区的移民和旅行日益增多,美国面临着疟疾再次传入的风险。"这项研究的合作者包括来自法国(法国国家输血研究所、法国国家医学研究中心/巴黎狄德罗大学的CéliaDechavanne和BenoitGamain)和马达加斯加(菲亚纳兰楚阿大学的ArsèneRatsimbasoa)的研究人员。齐默尔曼说:"100多年来,疟疾研究人员一直在努力了解非洲人对间日疟原虫感染的抗药性和易感性。超过25亿人可能生活在非洲和东南亚,这些地方都有这种寄生虫。每年有数十万人死于疟疾。总的来说,疟疾是全球三大健康传染病--疟疾、结核病和艾滋病毒/艾滋病之一。研究小组正在研究大多数非洲人和非洲裔人血液中的一种特殊血型(Fy-阴性),这种血型被称为"沉默的达菲血型"。达菲阴性血型的DNA代码(GATA-1)发生了突变,导致蛋白质不能在红细胞表面表达。研究人员利用实验室培育的血细胞和从骨髓中提取的细胞进行了实验,以研究达菲沉默血型。齐默尔曼说:"令人惊讶的是,我们发现,即使人们缺少GATA-1DNA编码,达菲蛋白有时也会出现在他们的红细胞上。我们的研究结果表明,骨髓和其他最初制造血细胞的地方对于疟原虫找到带有达菲蛋白的红细胞、生长和致病非常重要。"在实验室的其他实验中,他们检查了达菲无声血型人的血液。他们注意到,感染间日疟原虫通常是通过一种特殊的检验方法而不是通常的显微镜检验方法检测出来的。这意味着达菲沉默血型的人仍有可能受到感染,但在常规血液检测中并不容易发现。换句话说,他们发现间日疟原虫可以侵入达菲沉默血型患者的红细胞。此外,如果他们的骨髓受到感染,就会产生可传播的寄生虫。蚊子可以获得这种寄生虫,并导致其他人感染。齐默尔曼说:"这一发现提出了关于疟疾寄生虫如何导致感染和疾病的问题,特别是因为一些感染者在血液中并没有表现出很多迹象。我们需要更仔细地观察血液,以便更好地了解这种类型的疟疾在具有达菲-沉默特质的人中有多普遍和严重。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1415823.htm手机版:https://m.cnbeta.com.tw/view/1415823.htm

封面图片

科学家发现 CRISPR-Cas 系统的潜在新功能

科学家发现CRISPR-Cas系统的潜在新功能研究小组最近在《自然-微生物学》(NatureMicrobiology)杂志上发表了他们的研究成果。亚历山大-普罗斯特博士图片来源:UDE/BettinaEngel-Albustin2020年,生物化学家埃马纽埃尔-夏彭蒂耶(EmmanuelleCharpentier)和詹妮弗-杜德娜(JenniferDoudna)因将CRISPR-Cas系统(或称"基因剪刀")应用于基因工程的生物技术而获得诺贝尔奖。然而,这种基因工具的许多功能至今仍未被探索。例如,微生物能否利用它们来对抗寄生在它们身上的其他微生物?带着这个研究问题,亚历山大-普罗普斯特分析了地壳深处微生物的遗传物质。地球上70%以上的微生物都生活在深层生物圈中。如果我们想了解地球上的多样性,就值得深入研究,他解释道。这位微生物学家和他的团队一起分析了美国一个间歇泉从深海吐到地面的水,以及日本堀之部地下实验室的样本。研究小组重点研究了古细菌,它们作为宿主和寄生虫生活在生态系统中。这种微小的微生物在细胞大小上与细菌极为相似,但生理特性却大相径庭。他们的基因组分析结果提供了新的见解:宿主附近的寄生虫明显很少,而且宿主对寄生虫表现出遗传抗性。研究人员从微生物基因组中的基因剪刀中发现了其中的原因。"在进化过程中,古细菌吸收了寄生虫的DNA。如果带有相同DNA的寄生虫现在攻击生物体,外来遗传物质可能会被CRISPR系统识别并分解,"普罗普斯特解释道。这位微生物学家是分析环境样本中遗传物质的专家,他的实验室采用了最新的方法,如牛津纳米孔技术,该技术可以对遗传物质进行快速、全面的测序。为了排除他们只是遇到个别情况的可能性,研究人员将分析范围扩大到7000多个基因组,并观察到这种现象非常频繁。在未来的研究中,这一发现还将有助于区分有益的共生体和有害的寄生虫。如果存在CRISPR识别,那么该微生物就很有可能是寄生虫。这或许还将有助于今后更好地理解重要的新陈代谢过程,如生态系统中的碳流。...PC版:https://www.cnbeta.com.tw/articles/soft/1374597.htm手机版:https://m.cnbeta.com.tw/view/1374597.htm

封面图片

科学家研发在智能手机辅助下利用光线检测疟疾的设备 10秒内完成判断

科学家研发在智能手机辅助下利用光线检测疟疾的设备10秒内完成判断即使在现场对样本进行分析,这样做仍然需要向每个样本添加化学试剂,然后等待评估结果。此外,许多人根本不喜欢抽血,所以他们可能不愿意参加疟疾测试工作。这就是新的小型化手持光谱仪的用武之地。这个概念验证设备是由澳大利亚昆士兰大学的一个团队开发的,由MaggyLord博士领导。用户只需将光谱仪的一端压在病人的耳垂或指尖上,然后按下一个按钮来激活它。该设备的反应是将一束无害的红外光照进底层组织,持续5到10秒。"红外线可以穿透皮肤进入血液,反射回来的光线是血液中存在的指标,"Lord介绍。"疟疾感染红细胞,引起结构和化学变化,包括出现寄生虫特异性蛋白。我们假设这些变化产生了感染者相对于未感染者的独特特征。"一旦该设备探测到特定的反射光特征,它就会将数据无线传输到配对的智能手机上。该手机上的一个应用程序实时显示结果,让用户当时就知道病人是否感染了疟疾寄生虫。在目前的形式下,该光谱仪的制造成本约为2500美元,但在现实世界的使用场景中,它将迅速收回成本。Lord说:"由于它是快速和无试剂的,一台设备每天可以用来扫描大约1000人,这比现有的技术要划算得多。"关于这项研究的论文最近发表在PNASNexus杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1335197.htm手机版:https://m.cnbeta.com.tw/view/1335197.htm

封面图片

科学家在2亿年前的粪便化石中发现古代寄生虫

科学家在2亿年前的粪便化石中发现古代寄生虫在泰国猜也奔府NongYakong村采集的铜绿岩。图片来源:Nonsrirach等人,CC-BY4.0寄生虫是生态系统中常见的重要组成部分,但由于化石记录较少,很难对古代寄生虫进行研究。寄生虫通常栖息在宿主的软组织中,而这些软组织很少保存为化石。不过,也有在粪便化石(桡骨化石)中发现寄生虫痕迹的情况。在这项研究中,Nonsrirach及其同事描述了在泰国怀欣拉特地层的一块晚三叠世桡足石(距今已有2亿多年的历史)中发现寄生虫的证据。这块桡足石呈圆柱形,长度超过7厘米。根据它的形状和内容物,研究人员认为它很可能是由某些种类的植龙目产生的,植龙目是类似鳄鱼的食肉动物,在这个化石地点也有发现。对桡龙石薄片的显微分析发现了六个小的圆形有机结构,长度在50-150微米之间。其中一个椭圆形的厚壳结构被确认为寄生线虫的虫卵,其他的似乎是其他虫卵或身份不明的原生动物囊肿。这是亚洲三叠纪晚期陆生脊椎动物宿主体内寄生虫的首次记录,也是对明显受到多种寄生虫感染的古代动物生活的罕见一瞥。这一发现也增加了中生代动物桡骨内保存的线虫卵的已知实例。因此,这些发现是对科学认识远古寄生虫分布和生态学的重大贡献。作者补充说:"桡足石是一个重要的古生物宝库,其中包含多种未被发现的化石,拓展了我们对古代生态系统和食物链的认识"。...PC版:https://www.cnbeta.com.tw/articles/soft/1376413.htm手机版:https://m.cnbeta.com.tw/view/1376413.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人