研究人员发明测量高维量子比特的有效方法

研究人员发明测量高维量子比特的有效方法传统的计算机比特将数据分类为1或0,与之相反,量子比特可以持有1、0或两者的值。这是由于叠加的原因,这种现象使几个量子状态同时存在。量子比特的"d"指的是可能被编码在一个光子上的各种级别或数值。传统的量子比特只有两个层次,但通过增加更多层次,它们就变成了量子比特。左起:Hsuan-HaoLu和JosephLukens在ORNL量子实验室工作。资料来源:GenevieveMartin/ORNL,美国能源部。来自瑞士洛桑联邦理工学院(EPFL)、普渡大学和美国能源部橡树岭国家实验室的研究人员最近完成了一对纠缠的八级量子比特的特征分析,它们形成了一个64维的量子空间,使以前的离散频率模式记录翻了四倍。他们的发现最近发表在《自然通讯》杂志上。"我们一直都知道有可能利用光子的颜色或光频率来编码10级或20级的量子,甚至更高,但问题是测量这些粒子非常困难,"ORNL的博士后研究助理Hsuan-HaoLu说。"这就是这篇论文的价值--我们发现了一种高效和新颖的技术,在实验方面相对容易做到。"当qudits被纠缠时甚至更难测量,这意味着无论它们之间的物理距离如何,它们都共享非经典的相关性。尽管有这些挑战,频率槽对,也就是两个在频率上纠缠在一起的光子形式的量子很适合携带量子信息,因为它们可以按照规定的路径通过光纤而不被其环境明显改变。"我们将最先进的频率槽对生产与最先进的光源结合起来,然后用我们的技术来描述高维量子纠缠,其精确程度是以前没有显示过的,"Wigner研究员和ORNL的研究科学家JosephLukens说。研究人员开始了他们的实验,将激光照射到一个微环谐振器上--这是一个由EPFL制造的圆形片上设备,旨在产生非经典光。这个强大的光子源占据了1平方毫米的空间--大小与一支削尖的铅笔的笔尖相当--并允许研究小组以量子频率梳的形式产生频率槽对。通常情况下,qudit实验需要研究人员构建一种称为量子门的量子电路。但在这种情况下,研究小组使用一个电光相位调制器来混合不同频率的光,并使用一个脉冲整形器来修改这些频率的相位。这些技术在普渡大学AndrewWeiner领导的超快光学和光纤通信实验室得到了广泛的研究,Lu在加入ORNL之前曾在那里学习。这些光学设备在电信行业很常见,研究人员随机进行这些操作,以捕捉许多不同的频率相关性。据Lu说,这个过程就像掷出一对六面骰子,并记录每个数字组合出现的次数--但现在骰子是相互纠缠在一起的。"这种涉及相位调制器和脉冲整形器的技术,在超快和宽带光子信号处理的经典背景下被大量追求,并被扩展到频率量子化的大道上,"Weiner说。为了向后推断哪些量子态产生的频率相关性是量子比特应用的理想选择,研究人员在一种叫做贝叶斯推理的统计方法的基础上开发了一个数据分析工具,并在ORNL进行计算机模拟。这项成就建立在该团队以前的工作基础上,重点是进行贝叶斯分析和重建量子状态。研究人员现在正在对他们的测量方法进行微调,为一系列的实验做准备。通过通过光纤发送信号,他们旨在测试量子通信协议,如远程传输,这是一种传输量子信息的方法,以及纠缠互换,这是纠缠两个先前不相关的粒子的过程。普渡大学的研究生KarthikMyilswamy计划将微环谐振器带到ORNL,这将使该团队能够在该实验室的量子局域网上测试这些能力。Myilswamy说:"现在我们有一种方法可以有效地描述纠缠的频率量子,我们可以进行其他面向应用的实验。"...PC版:https://www.cnbeta.com.tw/articles/soft/1333675.htm手机版:https://m.cnbeta.com.tw/view/1333675.htm

相关推荐

封面图片

研究人员发现利用量子光探测量子声音的开创性方法

研究人员发现利用量子光探测量子声音的开创性方法最近发表在《物理评论快报》(PhysicalReviewLetters)杂志上的一项研究揭示了分子振动与光粒子(即光子)之间的量子力学相互作用。希望这一发现能帮助科学家更好地理解光与物质在分子尺度上的相互作用。量子效应在从新量子技术到生物系统等各种应用中的重要性的基本问题铺平了道路。UEA物理学院的马格努斯-博格(MagnusBorgh)博士说:"化学物理学界对光粒子的能量在分子内传递过程的性质长期存在争议。从根本上说,它们是量子力学还是经典力学?分子是复杂而混乱的系统,不断振动。这些振动如何影响分子中的任何量子力学过程?""对这些过程的研究通常使用依赖偏振的技术--这与太阳镜中用于减少反射的光的特性相同。但这是一种经典现象。量子光学是研究光的量子性质及其与原子尺度物质相互作用的物理学领域,它的技术可以提供一种直接研究分子系统中真正量子效应的方法。"光子相关性在量子行为中的意义通过研究置于激光场中的分子发出的光的相关性,可以揭示量子行为。相关性回答了两个光子发射距离很近的可能性有多大的问题,并可使用标准技术进行测量。UEA理论化学博士生本-汉弗莱斯(BenHumphries)说:"我们的研究表明,当分子与周围环境交换声子(量子力学的声音粒子)时,会在光子相关性中产生可识别的信号。"虽然光子在世界各地的实验室中都能被常规地产生和测量,但单个的量子振动,也就是相应的声音粒子--声子,一般无法进行类似的测量。新发现为研究分子中的量子声音世界提供了一个工具箱。首席研究员、UEA化学学院的加思-琼斯(GarthJones)博士说:"我们还计算了光子和声子之间的相关性。他补充说:"如果我们的论文能够启发人们开发新的实验技术,直接探测单个声子,那将是非常令人兴奋的。"...PC版:https://www.cnbeta.com.tw/articles/soft/1392893.htm手机版:https://m.cnbeta.com.tw/view/1392893.htm

封面图片

研究人员率先在光子芯片上实现量子模拟

研究人员率先在光子芯片上实现量子模拟罗切斯特大学的研究人员开发的一个新系统使他们能够在一个模拟物理世界的合成空间中进行量子模拟,通过控制量子纠缠光子的频率,或颜色,随着时间的推移。资料来源:罗切斯特大学图片/MichaelOsadciw来自罗切斯特大学哈吉姆工程与应用科学学院的一个研究小组开发了一个新的芯片级光量子模拟系统,可以帮助使这种系统变得可行。由电子和计算机工程及光学教授林强领导的这个团队于6月22日在《自然-光子学》杂志上发表了他们的研究结果。林强的团队在一个模拟物理世界的合成空间中进行了模拟,通过控制量子纠缠光子的频率或颜色,随着时间的流逝。这种方法不同于传统的基于光子的计算方法,在这种方法中,光子的路径被控制,也大大减少了物理足迹和资源需求。"我们第一次能够生产出量子相关的合成晶体,"林说。"新方法大大扩展了合成空间的尺寸,使我们能够对几个量子尺度的现象进行模拟,如量子纠缠光子的随机行走。"研究人员介绍说,这个系统可以作为未来更复杂的模拟的基础。"虽然被模拟的系统已被充分理解,但这个原则性证明实验显示了这种新方法的力量,可以扩展到更复杂的模拟和计算任务,这是我们在未来非常兴奋的研究内容,"该研究的主要作者UsmanJavid'23博士(光学)说。林强小组的其他共同作者包括雷蒙德-洛佩斯-里奥斯、凌敬伟、奥斯汀-格拉夫和杰里米-斯塔法。该项目得到了美国国家科学基金会、国防威胁减少局的化学和生物防御联合科技办公室以及国防高级研究计划局的资助。...PC版:https://www.cnbeta.com.tw/articles/soft/1368509.htm手机版:https://m.cnbeta.com.tw/view/1368509.htm

封面图片

研究人员结合诺贝尔奖获奖理念 提高量子通信的效率和安全性

研究人员结合诺贝尔奖获奖理念提高量子通信的效率和安全性纠缠光子是一种即使相隔很远也能保持连接的光粒子,2022年诺贝尔物理学奖对这方面的实验给予了肯定。IQC研究团队将纠缠与量子点(一种获得2023年诺贝尔化学奖的技术)相结合,旨在优化创建纠缠光子的过程,纠缠光子具有广泛的应用,包括安全通信。提高量子效率和纠缠度IQC和滑铁卢电气与计算机工程系教授MichaelReimer博士说:"量子密钥分发或量子中继器等令人兴奋的应用需要高度纠缠和高效率的结合,这些应用被设想用于将安全量子通信的距离扩展到全球范围或连接远程量子计算机。以前的实验只能测量到近乎完美的纠缠或高效率,但我们是第一个用量子点同时达到这两个要求的人。"纠缠光子源--嵌入半导体纳米线的铟基量子点(左),以及如何从纳米线中有效提取纠缠光子的可视化图。资料来源:滑铁卢大学通过将半导体量子点嵌入纳米线,研究人员创造出了一种能产生近乎完美的纠缠光子的光源,其效率是以前工作的65倍。这种新光源是与位于渥太华的加拿大国家研究理事会合作开发的,可以用激光激发,根据指令产生纠缠对。研究人员随后使用荷兰SingleQuantum公司提供的高分辨率单光子探测器来提高纠缠程度。历史上,量子点系统一直存在一个名为"精细结构分裂"的问题,它会导致纠缠态随时间发生振荡。这意味着使用慢速检测系统进行测量将无法测量纠缠状态,IQC和滑铁卢电气与计算机工程系博士生MatteoPennacchietti说。"我们将量子点与非常快速和精确的检测系统相结合,克服了这一难题。我们基本上可以在振荡过程中的每一点上获取纠缠态的时间戳,这就是我们拥有完美纠缠的地方。"为了展示未来的通信应用,Reimer和Pennacchietti与NorbertLütkenhaus博士和ThomasJennewein博士(两人均为IQC教师和滑铁卢物理与天文学系教授)及其团队合作。利用新的量子点纠缠源,研究人员模拟了一种称为量子密钥分发的安全通信方法,证明量子点源在未来的安全量子通信中大有可为。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1424968.htm手机版:https://m.cnbeta.com.tw/view/1424968.htm

封面图片

研究人员“分裂”声子 迈向新型线性机械量子计算机

研究人员“分裂”声子迈向新型线性机械量子计算机在两个实验中-也是同类实验中的首创,由AndrewCleland教授领导的团队使用一种称为声学分束器的装置来“分裂”声子,从而证明它们的量子特性。通过证明分束器可用于为一个声子诱导特殊的量子叠加态,并进一步在两个声子之间产生干涉,研究团队迈出了创建新型量子计算机的第一个关键步骤。该结果最近发表在《科学》杂志上,并建立在普利兹克分子工程团队多年在声子方面的突破性工作的基础上。在同类实验中,普利兹克分子工程学院的一个研究团队迈出了创建线性机械量子计算机的关键步骤。将声子“分裂”成叠加态在实验中,研究人员使用的声子音调比人耳所能听到的高大约一百万倍。此前,Cleland和他的团队弄清楚了如何创建和检测单个声子,并且是第一个纠缠两个声子的人。为了展示这些声子的量子能力,包括Cleland的研究生HongQiao在内的团队创建了一个分束器,可以将一束声波分成两半,传输一半并将另一半反射回其源(分束器已经存在用于光并且具有被用来证明光子的量子能力)。整个系统包括两个用于产生和检测声子的量子位,在极低的温度下运行,并使用单独的表面声波声子,这些声子在材料表面传播,在这种情况下是铌酸锂。研究生HongQiao(左)和研究生ChrisConner在AndrewCleland教授的实验室工作。然而,量子物理学认为单个声子是不可分割的。因此,当团队将单个声子发送到分束器时,它并没有分裂,而是进入了量子叠加状态,即声子同时被反射和传输的状态。观察(测量)声子会导致该量子态坍缩为两个输出之一。该团队找到了一种通过在两个量子位中捕获声子来维持叠加状态的方法。量子比特是量子计算中信息的基本单位。实际上只有一个量子位捕获了声子,但研究人员在测量后才能分辨出是哪个量子位:换句话说,量子叠加从声子转移到两个量子位。研究人员测量了这两个量子比特的叠加,产生了“分束器正在产生量子纠缠态的黄金标准证据”,克莱兰说,他也是美国能源部阿贡国家实验室的科学家。结果显示声子表现得像光子在第二个实验中,该团队想要展示一种额外的基本量子效应,该效应在1980年代首次用光子证明。现在称为Hong-Ou-Mandel效应,当两个相同的光子同时从相反方向发送到分束器时,叠加的输出会发生干涉,因此两个光子总是一起传播,在一个或另一个输出方向上。重要的是,当团队用声子进行实验时,情况也是如此——叠加的输出意味着两个探测器量子位中只有一个捕获声子,从一个方向而不是另一个方向。尽管量子位一次只能捕获一个声子,而不是两个,但放置在相反方向的量子位永远不会“听到”声子,这证明两个声子都朝着相同的方向移动。这种现象称为双声子干涉。新论文的作者包括(左起)研究生RhysPovey、研究生ChrisConner、研究生JacobMiller、研究生YashJoshi、研究生HongQiao(论文的第一作者)、研究生HaoxiongYan、研究生XuntaoWu和博士后研究员GustavAndersson。与光子相比,让声子进入这些量子纠缠态是一个更大的飞跃。这里使用的声子虽然不可分割,但仍然需要数千万亿个原子以量子力学方式协同工作。如果量子力学只在最微小的领域统治物理学,那么它就会提出这个领域的终点和经典物理学的起点的问题;该实验进一步探讨了这种转变。Cleland说:“所有这些原子都必须一致地表现在一起,以支持量子力学所说的它们应该做的事情。这有点不可思议。量子力学的奇异之处不受大小的限制。”创建一台新的线性机械量子计算机量子计算机的强大之处在于量子领域的“怪异”。通过利用叠加和纠缠的奇怪量子力量,研究人员希望解决以前棘手的问题。一种方法是在所谓的“线性光学量子计算机”中使用光子。使用声子而不是光子的线性机械量子计算机本身就有能力进行新的计算。“双声子干涉实验的成功是表明声子等同于光子的最后一块,”Cleland说。“结果证实我们拥有构建线性机械量子计算机所需的技术。”与基于光子的线性光量子计算不同,UChicago平台直接将声子与量子比特集成在一起。这意味着声子可以进一步成为混合量子计算机的一部分,它将最好的线性量子计算机与基于量子位的量子计算机的能力结合起来。下一步是使用声子创建逻辑门-计算的重要组成部分,Cleland和他的团队目前正在对此进行研究。...PC版:https://www.cnbeta.com.tw/articles/soft/1364811.htm手机版:https://m.cnbeta.com.tw/view/1364811.htm

封面图片

研究人员开发出一种利用磁子传输量子信息的新方法

研究人员开发出一种利用磁子传输量子信息的新方法HZDR的研究人员成功地在磁盘中产生了类似于波的激发--即所谓的磁子--来专门操纵碳化硅中原子大小的量子比特。这为量子网络中的信息传输开辟了新的可能性。图片来源:HZDR/MauricioBejarano为了满足这一需求,德累斯顿-罗森多夫亥姆霍兹中心(HZDR)的一个研究小组现在推出了一种传输量子信息的新方法:该小组通过利用磁子(磁性材料中的波状激起)的磁场来操纵量子比特(即所谓的量子比特),磁子发生在微观磁盘中。研究人员在《科学进展》(ScienceAdvances)杂志上发表了他们的研究成果。建造可编程的通用量子计算机是当代最具挑战性的工程和科学研究之一。这种计算机的实现为物流、金融和制药等不同行业领域带来了巨大潜力。然而,由于量子计算机技术在存储和处理信息时存在固有的脆弱性,因此阻碍了实用量子计算机的建造。量子信息被编码在量子比特中,而量子比特极易受到环境噪声的影响。微小的热波动(几分之一度)就可能完全破坏计算。这促使研究人员将量子计算机的功能分布在不同的独立构件中,以努力降低出错率,并利用这些构件的互补优势。"然而,这就带来了一个问题,即如何在模块之间传输量子信息,使信息不会丢失,"HZDR研究员、该刊物第一作者毛里西奥-贝哈拉诺(MauricioBejarano)说。"我们的研究正是在这个特定的利基上,在不同的量子模块之间传输通信。"目前,传输量子信息和寻址量子比特的既定方法是通过微波天线。这是Google和IBM在其超导芯片中使用的方法,也是在这场量子竞赛中处于领先地位的技术平台。"而我们则是通过磁子来寻址量子比特。磁子可被视为穿过磁性材料的磁激发波。这样做的好处是,磁子的波长在微米范围内,比传统微波技术的厘米波短得多。因此,磁子的微波足迹在芯片中花费的空间更少。HZDR小组研究了磁子与碳化硅晶体结构中硅原子空位形成的量子比特的相互作用,碳化硅是一种常用于大功率电子器件的材料。这类量子比特通常被称为自旋量子比特,因为量子信息是由空位的自旋状态编码的。但是,如何利用磁子来控制这类量子比特呢?"通常情况下,磁子是通过微波天线产生的。"贝哈拉诺解释说:"这就带来了一个问题,即很难将来自天线的微波驱动与来自磁子的微波驱动分离开来。"为了将微波从磁子中分离出来,HZDR团队利用了一种在镍铁合金微观磁盘中可以观察到的奇特磁现象。"由于非线性过程,磁盘内的一些磁子具有比天线驱动频率低得多的频率。我们只用这些频率较低的磁子来操纵量子比特"。研究小组强调,他们还没有进行任何量子计算。不过,他们表明,完全用磁子处理量子比特从根本上是可行的。"迄今为止,量子工程界还没有意识到磁子可以用来控制量子比特,"Schultheiß强调说。"但我们的实验证明,这些磁波确实可以派上用场"。为了进一步发展他们的方法,研究小组已经在为未来的计划做准备:他们想尝试控制几个间距很近的单个量子比特,让磁子介导它们的纠缠过程--这是进行量子计算的先决条件。他们的设想是,从长远来看,磁子可以被直接电流激发,其精确度可以达到在量子比特阵列中专门针对单个量子比特。这样就可以将磁子用作可编程量子总线,以极其有效的方式寻址量子比特。虽然未来还有大量工作要做,但该研究小组的研究强调,将磁子系统与量子技术相结合,可以为未来开发实用量子计算机提供有益的启示。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1424810.htm手机版:https://m.cnbeta.com.tw/view/1424810.htm

封面图片

研究人员利用光子混合纠缠提高嘈杂条件下的传送质量 实现近乎完美的状态转移

研究人员利用光子混合纠缠提高嘈杂条件下的传送质量实现近乎完美的状态转移访问:Saily-使用eSIM实现手机全球数据漫游安全可靠源自NordVPN芬兰图尔库大学和中国科技大学(合肥)的研究人员现在提出了一种理论设想,并进行了相应的实验来克服这一问题。换句话说,尽管存在噪声,新方法仍能实现高质量的远程传输。图尔库大学的JyrkiPiilo教授说:"这项工作的基础是,在运行远距传输协议之前,将纠缠分发到所使用的量子比特之外,即利用不同物理自由度之间的混合纠缠。"传统上,光子的偏振被用于远距离传输中的量子比特纠缠,而目前的方法则利用了光子的偏振和频率之间的混合纠缠。Piilo介绍说:"这使得噪声对协议的影响发生了重大变化,事实上,我们的发现扭转了噪声的作用,使其从对远程传输有害变为有利。"在存在噪声的传统量子比特纠缠情况下,远距传输协议不起作用。在最初存在混合纠缠且没有噪声的情况下,远距传输也不起作用。奥利-西尔塔宁博士(OlliSiltanen)的博士论文介绍了当前研究的理论部分。尽管在使用光子进行远距传物时存在某种噪声,但这一发现几乎实现了理想的远距传物。中国科技大学的李传锋教授说:"虽然我们在实验室里用光子做了许多量子物理不同方面的实验,但看到这个极具挑战性的远距传物实验成功完成,我们感到非常激动,也很有成就感。这是在最重要的量子协议背景下进行的一次重要的原理验证实验。"远距传输在传输量子信息等方面有着重要的应用,因此最重要的是要有办法保护这种传输不受噪声影响,并可用于其他量子应用。目前的研究成果可被视为基础研究,具有重要的基础意义,并为未来将该方法扩展到一般类型的噪声源和其他量子协议的工作开辟了引人入胜的途径。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1430199.htm手机版:https://m.cnbeta.com.tw/view/1430199.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人