新研究详述了1型糖尿病的微生物起源 并指出了潜在的治疗方法

新研究详述了1型糖尿病的微生物起源并指出了潜在的治疗方法如果科学家们能够弄清楚这种被称为BefA的蛋白质是如何工作的,他们也许能够以治疗的方式刺激β细胞的生产。作为犹他大学的博士后研究人员,Hill继续研究这种被称为BefA的蛋白质。此外,UO的KarenGuillemin实验室也继续研究BefA。与其他同事一起,他们现在已经收集了对BefA的功能和其产生原因的新认识。这些发现具有"重要而深远的意义",Guillemin说。"如果我们了解BefA是如何工作的,它可以为我们提供一种治疗性地刺激β细胞生产的方法。有一天,这可能会导致对1型糖尿病的治疗,这影响了全世界数百万人。研究人员的发现最近发表在《细胞代谢》杂志上。身体需要胰岛素来控制血糖,但只有某种被称为β细胞的胰腺细胞能够产生胰岛素。此外,β细胞只在儿童早期发育的短暂时间窗口内复制和增加数量。在1型糖尿病患者中,免疫系统会攻击β细胞,减少它们的数量并限制可产生的胰岛素数量。免疫发展微生物组的刺激有助于适当地培训免疫系统,避免被自身免疫攻击。Guillemin团队的研究指出了微生物组的另一个作用。在发育早期,它刺激了β细胞群的生长,作为保护性缓冲,防止以后被自身免疫攻击耗尽。Hill说:"β细胞数量的增长"是在肠道内微生物群落多样化的同时发生的。糖尿病的一个特征是患糖尿病的孩子往往有一个不太多样化的肠道微生物群。有可能他们缺少一些制造BefA的细菌。"在他们最近的论文中,Hill、Guillemin和他们的同事对BefA进行了更深入的研究。他们拍摄了BefA结构的详细图像,以确定其与细胞膜互动的部分。然后,通过在斑马鱼、小鼠和培养的细胞中进行的一系列实验,研究人员勾勒出了BefA的功能图。研究表明,BefA可以破坏许多种细胞的膜,包括细菌和动物的膜。肠道细菌会攻击竞争性细菌,但出乎意料的是,他们还发现,BefA对胰岛素生产细胞的膜的攻击引发了这些细胞的繁殖。这一发现表明,肠道中的细菌战可以对身体产生附带的有益影响,在整个生命周期中提高能够制造胰岛素的细胞数量。研究小组还测试了BefA的一个变异版本,该版本被修改为不能与细胞膜发生冲突,该版本的蛋白质没有影响到β细胞的生产,进一步表明膜损伤正在驱动BefA的作用。Hill说:"在发育生物学中还有其他例子,在膜上打洞是刺激发育的关键,"但研究人员还不清楚这里的损伤是如何引发细胞复制的。而且他们不知道为什么实际上可以改变许多种细胞的膜的BefA,会如此特别地针对β细胞。Hill说:"我们认为β细胞有一些特别之处,它们可能对导致膜通透性的线索高度敏感,做出反应。它们是整个身体中唯一能够分泌胰岛素的细胞类型--它们是高度重要的。"Hill因其在BefA方面的工作而获得了今年的NOSTER&Science微生物组奖。该年度奖项颁发给对微生物组研究有新的理解并能影响人类健康的早期职业科学家。"微生物组在教育免疫系统方面发挥了作用。如果你没有这种教育,免疫系统可能会过度反应,"Guillemin说。"我们认为这里还有另一层含义--如果你没有发展出一个对抗未来破坏的β细胞库,你就会有更多患1型糖尿病的风险。而一个健康、多样化的微生物群在建立该细胞群方面发挥着关键作用。在未来,Guillemin的团队设想了该发现可能的治疗应用。例如,用产生BefA的细菌主动强化高危婴儿的微生物组,可以防止他们以后患上1型糖尿病。...PC版:https://www.cnbeta.com.tw/articles/soft/1333951.htm手机版:https://m.cnbeta.com.tw/view/1333951.htm

相关推荐

封面图片

胃干细胞有望成为治疗糖尿病的手段

胃干细胞有望成为治疗糖尿病的手段人类胃部分泌胰岛素的器官在分子和功能上与胰岛相似。红色:c-肽,是促胰岛素的副产品。绿色:胰高血糖素(通常由胰腺的α细胞产生)和体肽和胃泌素(通常由胃细胞产生)。蓝色:DAPI,标记细胞核。图片由黄晓峰提供。尽管1型糖尿病的确切原因尚不清楚,但人们认为它是由一种自身免疫反应引起的,即身体攻击并破坏了胰腺的β细胞,即产生胰岛素的细胞。多年来,研究人员一直在研究如何通过使用干细胞来创造产生胰岛素的细胞来取代被免疫系统破坏的细胞来"治愈"糖尿病。人类肠道中的干细胞,即胃干细胞每隔五至七天就会完成再生我们肠道内壁的非凡壮举。它们还分化成肠道特定组织,包括分泌激素的肠道内分泌细胞(EECs)。能够产生分泌激素胰岛素的EECs,对于那些β细胞已经停止产生或没有产生足够的胰岛素的1型糖尿病患者来说,具有很大的治疗价值。现在,威尔康奈尔医学院的研究人员已经实现了这一目标,将人类胃干细胞转化为分泌胰岛素的细胞,这些细胞对血糖水平的反应与健康的胰腺β细胞一样。该研究的通讯作者JoeZhou说:"胃会制造自己的激素分泌细胞,而胃细胞和胰腺细胞在胚胎发育阶段是相邻的,所以从这个意义上说,胃干细胞能够如此轻易地转化为类似β细胞的胰岛素分泌细胞,并不完全令人惊讶。"这是Zhou15年多来一直努力实现的目标。通过早期的实验,他发现他可以通过强制激活三个转录因子(控制基因表达的蛋白质),将小鼠的普通胰腺细胞转化为分泌胰岛素的β细胞。2016年,再次使用小鼠,他和他的研究团队发现,胃干细胞也对这种三因子激活方法高度敏感。在目前的研究中,研究人员通过一种简单的非手术程序,即内窥镜检查,将一根带有摄像头的细软管(内窥镜)通过口腔插入胃部,取出胃干细胞。内窥镜上安装了一个工具,使操作者能够提取组织样本。在将胃干细胞转化为被称为胃胰岛素分泌细胞(GINS)的β样细胞后。研究人员将它们培育成被称为器官的小集群,他们发现,这些细胞在10天内对葡萄糖变得敏感,并通过分泌胰岛素做出反应。当GINS被移植到糖尿病小鼠体内时,它们的行为很像真正的胰腺β细胞,通过分泌胰岛素对血糖的上升作出反应,以保持血糖水平的稳定。移植的细胞在研究人员监测的6个月时间里继续产生胰岛素。他们说,这表明它们的稳健性。这是一项概念验证研究,为开发基于患者自身细胞的1型糖尿病和严重2型糖尿病的治疗方法奠定了基础。2021年,全世界估计有840万1型糖尿病患者。到2040年,这一数字预计将上升到1350万至1740万之间。目前,1型糖尿病患者用胰岛素治疗他们的病情,手动注射或使用可穿戴的胰岛素泵连续注射。一些晚期2型糖尿病患者需要服用胰岛素来补充他们身体的不足水平。研究人员说,移植由患者干细胞产生的胰岛素分泌细胞是改善β细胞功能的一种更自然的方式,并将减少移植排斥问题。研究人员将在推进临床试验之前优化他们的方法,包括增加用于人类移植的β样细胞生产规模。重要的是,他们正在努力修改这些细胞,使它们不那么容易受到免疫系统的攻击,这种攻击会破坏1型糖尿病患者的β细胞。该研究发表在《自然-细胞生物学》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1361847.htm手机版:https://m.cnbeta.com.tw/view/1361847.htm

封面图片

微生物群在室友家人之间共享

微生物群在室友家人之间共享《nature》发表了一项迄今关于人类微生物群传播最大最多样化的研究,世界各地18个机构和研究中心参与。分析了五大洲20个国家9715份参与者的粪便和唾液样本,评估母婴、亲人、双胞胎、伴侣、室友、村庄和人群之间的传播。结果表明,同居个体之间存在大量的菌株共享,此前认为非传染性的疾病可能一定程度上具有传染性,包括但不限于与微生物群相关的癌症、糖尿病、心血管疾病、肥胖。同居个体之间肠道和口腔微生物组的中位数菌株共享率为12%和32%,伴侣之间的肠道和口腔菌株共享分别为13%和38%,口腔微生物群的传播会随着同居持续时间而增强。母婴间菌株共享率50%,母体微生物群的细菌甚至可以在老年人身上检测到。同一村庄不同家庭的个体的菌株共享率明显高于不同村庄的菌株共享率。https://www.nature.com/articles/s41586-022-05620-1#硬核#科普#科学#Nature投稿:@ZaiHuabot频道:@TestFlightCN

封面图片

麻省理工学院的自供氧植入物有望掀起糖尿病治疗的革命

麻省理工学院的自供氧植入物有望掀起糖尿病治疗的革命治疗1型糖尿病的一种很有前景的方法是植入能在需要时产生胰岛素的胰岛细胞,这样患者就不用频繁注射胰岛素了。然而,这种方法的一个主要障碍是,一旦植入细胞,它们最终会因缺氧而停止产生胰岛素。为了克服这一障碍,麻省理工学院的工程师们设计出了一种新型植入式装置,这种装置不仅携带了数十万个可产生胰岛素的胰岛细胞,而且还拥有自己的板载氧气工厂,可通过分裂人体内的水而产生氧气。研究人员的研究结果表明,将这种装置植入糖尿病小鼠体内,可使小鼠的血糖水平保持稳定至少一个月。研究人员现在希望能制造出更大版本的装置,大小与口香糖差不多,最终能在1型糖尿病患者身上进行测试。麻省理工学院的工程师们设计了一种植入式设备,它能携带数十万个胰岛细胞,并自带氧气工厂,以保持细胞健康。图片来源:FeliceFrankel研究团队的见解"你可以把它想象成一个由分泌胰岛素的人体细胞和电子生命支持系统组成的活体医疗设备。"麻省理工学院化学工程系教授、麻省理工学院科赫癌症综合研究所(KochInstituteforIntegrativeCancerResearch)和医学工程与科学研究所(IMES)成员、本研究的资深作者丹尼尔-安德森(DanielAnderson)说:"我们对目前取得的进展感到兴奋,我们对这项技术最终能帮助病人感到非常乐观。"虽然研究人员的主要研究方向是糖尿病治疗,但他们表示,这种设备也可以用于治疗其他需要反复输送治疗蛋白的疾病。麻省理工学院研究科学家西达斯-克里希南(SiddharthKrishnan)是这篇论文的第一作者,论文最近发表在《美国国家科学院院刊》上。研究团队还包括麻省理工学院的其他几位研究人员,其中包括麻省理工学院大卫-科赫研究所教授、科赫研究所成员罗伯特-兰格(RobertLanger),以及波士顿儿童医院的研究人员。图为该装置浸没在水中,产生氧气(下)和氢气(上)气泡,无需任何电池或电线。图片来源:麻省理工学院/波士顿儿童医院ClaudiaLiu和SiddharthKrishnan博士提供当前糖尿病治疗面临的挑战大多数1型糖尿病患者必须仔细监测血糖水平,每天至少注射一次胰岛素。然而,这一过程并不能复制人体控制血糖水平的自然能力。安德森说:"绝大多数胰岛素依赖型糖尿病患者都在为自己注射胰岛素,并尽了最大努力,但他们的血糖水平并不健康。如果你看看他们的血糖水平,即使是那些非常尽心尽力、小心谨慎的人,他们的血糖水平也无法与活体胰腺相比"。更好的替代方法是移植细胞,只要检测到病人的血糖水平激增,这些细胞就会产生胰岛素。一些糖尿病患者已经接受了从人类尸体上移植的胰岛细胞,从而实现了对糖尿病的长期控制;不过,这些患者必须服用免疫抑制药物,以防止身体对植入的细胞产生排斥反应。最近,研究人员利用从干细胞中提取的胰岛细胞也取得了类似的成功,但接受这些细胞的病人也需要服用免疫抑制剂。这张照片显示的是完全组装好的设备的阴极面,并用一枚美国25美分硬币表示比例。图片来源:麻省理工学院/波士顿儿童医院ClaudiaLiu和SiddharthKrishnan博士提供应对氧气供应挑战另一种可以避免使用免疫抑制剂的方法是将移植细胞封装在一个柔性装置中,以保护细胞不受免疫系统的影响。然而,为这些封装细胞找到可靠的氧气供应已被证明具有挑战性。一些实验性装置,包括一种已在临床试验中进行测试的装置,具有一个可以为细胞供氧的氧舱,但这个氧舱需要定期重新装载。其他研究人员开发出的植入物包括能产生氧气的化学试剂,但这些试剂最终也会耗尽。麻省理工学院的研究小组采用了另一种方法,即通过分裂水来无限生成氧气。这种方法是通过装置内的质子交换膜来实现的,质子交换膜是一种最初用于在燃料电池中产生氢气的技术。这层膜可以将水蒸气(人体内含量丰富)分成氢气和氧气,氢气会无害扩散,而氧气则会进入一个储存室,通过一层薄薄的透氧膜供给胰岛细胞。这种方法的一大优势是不需要任何电线或电池。分离这种水蒸气需要很小的电压(约2伏),这种电压是利用一种称为共振感应耦合的现象产生的。位于体外的调谐磁性线圈将电力传输到设备内的小型柔性天线,从而实现无线电力传输。它需要一个外部线圈,研究人员预计可以将其作为贴片佩戴在病人皮肤上。有希望的实验结果在制造出与美国25美分硬币差不多大小的设备后,研究人员在糖尿病小鼠身上进行了测试。一组小鼠接受了带有氧气生成和水分离膜的装置,另一组小鼠则接受了含有胰岛细胞的装置,但没有补充氧气。这些装置被植入具有完全功能性免疫系统的小鼠皮下。研究人员发现,植入制氧装置的小鼠能够维持正常的血糖水平,与健康动物相当。然而,接受非供氧装置的小鼠在大约两周内就出现了高血糖(血糖升高)。通常情况下,任何一种医疗设备植入人体后,免疫系统的攻击都会导致疤痕组织的堆积,这种疤痕组织被称为纤维化,会降低设备的有效性。这项研究中使用的植入物周围确实形成了这种疤痕组织,但该装置成功地控制了血糖水平,这表明胰岛素仍能从装置中扩散出来,葡萄糖也能进入装置。这种方法也可用于输送产生其他类型治疗蛋白的细胞,这些蛋白需要长期给药。在这项研究中,研究人员发现,这种装置还能让产生促红细胞生成素的细胞保持活力,促红细胞生成素是一种能刺激红细胞生成的蛋白质。未来展望安德森说:"我们乐观地认为,有可能制造出能够驻留在体内并根据需要生产药物的活体医疗设备。有多种疾病的患者需要外源性服用蛋白质,有时甚至需要频繁服用。如果我们能用一种能长期发挥作用的植入物取代每隔一周输液一次的需要,我认为这确实能帮助很多病人。"研究人员现在计划调整该装置,以便在大型动物身上进行测试,最终在人类身上进行测试。为了供人类使用,他们希望开发出一种与口香糖大小差不多的植入物。他们还计划测试该装置是否能在体内保留更长的时间。克里希南说:"我们使用的材料本身就很稳定,寿命也很长,所以我认为这种长期运作是有可能的,这也是我们正在努力的方向。"兰格补充说:"我们对这些发现感到非常兴奋,我们相信这些发现有朝一日会为治疗糖尿病和其他疾病提供一种全新的方法。"这项研究得到了JDRF、LeonaM.andHarryB.Helmsley慈善信托基金和美国国立卫生研究院国家生物医学成像和生物工程研究所的资助。...PC版:https://www.cnbeta.com.tw/articles/soft/1388913.htm手机版:https://m.cnbeta.com.tw/view/1388913.htm

封面图片

研究发现益生菌治疗可降低胰岛素抵抗并预防糖尿病

研究发现益生菌治疗可降低胰岛素抵抗并预防糖尿病了解胰岛素抵抗胰岛素是胰腺针对血糖释放的一种激素。正常情况下,胰岛素帮助糖分进入肌肉和肝脏,以便肌肉和肝脏利用能量。当一个人出现胰岛素抵抗时,就意味着胰岛素无法发挥其作用,因此会有更多的糖分留在血液中,胰腺也会继续制造更多的胰岛素。胰岛素抵抗可导致肥胖、糖尿病前期和全面爆发的2型糖尿病。研究显示,肠道细菌以毛螺菌(梭菌)为主的人,胰岛素抵抗水平往往较高,粪便中的单糖含量也较高。而杆菌科细菌较多的人往往胰岛素抵抗较低,粪便中的单糖含量也较低。资料来源:理化学研究所肠道细菌的作用人类的肠道是数以万亿计细菌的家园,其中许多细菌会分解我们吃下的碳水化合物,否则这些碳水化合物将无法被消化。虽然许多人都认为这种现象与肥胖和糖尿病前期有关,但由于细菌种类繁多,而且缺乏代谢数据,因此事实仍不清楚。理化学研究所的大野和他的团队通过综合研究解决了这一问题,并在此过程中发现了一种可能有助于减轻胰岛素抵抗的细菌。主要发现最初,他们对300多名成年人在定期体检时提供的粪便中能检测到的代谢物进行了研究。他们将这种代谢组与从这些人身上获得的胰岛素抵抗水平进行了比较。"我们发现,较高的胰岛素抵抗与粪便中过多的碳水化合物有关,"大野说,"尤其是葡萄糖、果糖、半乳糖和甘露糖等单糖。"接下来,他们描述了研究参与者肠道微生物群的特征及其与胰岛素抵抗和粪便碳水化合物的关系。胰岛素耐受性较高的人的肠道中含有较多的毛螺菌(Lachnospiraceae)分类目的细菌,而不是其他分类目的细菌。此外,包含毛螺菌的微生物群与粪便碳水化合物过多有关。因此,以其为主的肠道微生物群与胰岛素抵抗和粪便中单糖过多有关。同时,与其他类型的细菌相比,肠道中含有更多类杆菌属细菌的参与者的胰岛素抵抗和单糖水平较低。小鼠实验研究小组随后开始研究细菌对培养物和小鼠新陈代谢的直接影响。在培养过程中,类杆菌消耗的单糖与胰岛素抗性高的人粪便中发现的单糖种类相同,其中Alistipesindistinctus菌种消耗的单糖种类最多。研究小组在肥胖小鼠体内观察了不同细菌对血糖水平的影响。他们发现,A.indistinctus(另枝菌属)能降低血糖,减少胰岛素抵抗和小鼠可获得的碳水化合物量。影响和未来展望这些结果与人类患者的研究结果一致,对诊断和治疗具有重要意义。正如Ohno解释的那样:"由于与胰岛素抵抗有关,肠道拉赫诺斯拉氏菌的存在可能是糖尿病前期的良好生物标志物。同样,使用含有缈菌的益生菌治疗可能会改善糖尿病前期患者的葡萄糖耐受不良状况"。虽然目前大多数非处方益生菌都不含本研究中发现的细菌,但Ohno敦促人们在使用这些益生菌时要谨慎。"这些发现需要在人体临床试验中得到验证,然后我们才能推荐任何益生菌作为治疗胰岛素抵抗的药物"。...PC版:https://www.cnbeta.com.tw/articles/soft/1380625.htm手机版:https://m.cnbeta.com.tw/view/1380625.htm

封面图片

科学家发现失去关键类型的胰腺细胞可能导致糖尿病的发生

科学家发现失去关键类型的胰腺细胞可能导致糖尿病的发生由CD63hiβ细胞制成的移植假小体。资料来源:威尔-康奈尔医学院该研究最近发表在《自然-细胞生物学》上,由威尔康奈尔医学院医学副教授JamesLo博士领导,研究了小鼠单个β细胞的基因表达,以确定胰腺中不同β细胞类型的数量。研究小组发现了四种不同类型的β细胞,其中一组被称为cluster1,由于其卓越的胰岛素生产和糖代谢能力而脱颖而出。该研究还显示,这种特殊类型的β细胞的丧失可能与2型糖尿病的发展有关。罗博士说:"在这之前,人们认为一个β细胞就是一个β细胞,他们只是计算总的β细胞,"他也是威尔康奈尔医学中心的威尔代谢健康中心和心血管研究所的成员,以及纽约长老会/威尔康奈尔医学中心的心脏病专家。"但这项研究告诉我们,对β细胞进行亚型化可能很重要,我们需要研究这些特殊的第1群β细胞在糖尿病中的作用。"威尔康奈尔医学中心的DoronBetel、JingliCao、GeoffreyPitt和ShuibingChen博士与Lo博士合作开展了这项研究。研究人员使用一种称为单细胞转录组学的技术来测量单个小鼠β细胞中表达的所有基因,然后利用这些信息将它们分为四种类型。第1组β细胞具有独特的基因表达特征,包括高表达的基因,这些基因帮助称为线粒体的细胞动力室分解糖,并为它们分泌更多胰岛素提供动力。此外,他们可以通过CD63基因的高表达将第1组β细胞与其他β细胞类型区分开来,这使他们能够使用CD63蛋白作为这种特定β细胞类型的标记。当研究小组观察人类和小鼠的β细胞时,他们发现CD63基因高表达的第1簇β细胞比CD63低表达的其他三种类型的β细胞在对糖的反应中产生更多的胰岛素。"它们是非常高功能的β细胞,"Lo博士说。"我们认为它们可能承担了生产胰岛素的大部分工作量,因此它们的损失可能会产生深远的影响。"在喂食肥胖诱导的高脂肪饮食的小鼠和患有2型糖尿病的小鼠中,这些产生胰岛素的动力型β细胞的数量减少了。他说:"因为cluster1/高CD63细胞的数量减少了,胰岛素生产可能会减少,这可能在糖尿病的发展中起着重要作用。"将具有高CD63产量的β细胞移植到患有2型糖尿病的小鼠体内,使其血糖水平恢复正常。但移除移植的细胞后,高血糖水平就会恢复。将低CD63产量的β细胞移植到小鼠体内并不能使血糖恢复到正常水平。移植的低CD63β细胞反而出现了功能紊乱。Lo博士说,这一发现可能对使用β细胞移植治疗糖尿病有重要意义。例如,只移植高CD63的β细胞可能会更好。他指出,也有可能移植较少的这些高产细胞。Lo博士的团队还发现,与没有糖尿病的人相比,患有2型糖尿病的人的高CD63β细胞水平较低。下一步,Lo博士和他的同事希望找出糖尿病小鼠中高CD63生产的β细胞会发生什么,以及如何使它们不至于消失。我们能弄清楚如何让它们保持更长的时间,存活并发挥作用,这可能会带来更好的方法来治疗或预防2型糖尿病。他们还想研究现有的糖尿病治疗方法如何影响所有类型的β细胞。GLP-1激动剂有助于增加糖尿病患者的胰岛素释放,它与产生CD63的高和低β细胞相互作用。研究还表明,GLP-1激动剂也可能是一种让低CD63产生的β细胞更好地工作的方法。...PC版:https://www.cnbeta.com.tw/articles/soft/1350679.htm手机版:https://m.cnbeta.com.tw/view/1350679.htm

封面图片

美国药管局批准首款延缓1型糖尿病病程新药

美国药管局批准首款延缓1型糖尿病病程新药(早报讯)美国食品和药物管理局近日批准首款用于延缓1型糖尿病病程的新药,适用于患二期1型糖尿病的成人和8岁及以上儿童,可延缓其病程发展至三期。新华社报道,1型糖尿病是一种代谢紊乱综合征,其特征是由于胰岛素绝对缺乏引起的高血糖。这种疾病主要是胰腺中产生胰岛素的β细胞被破坏所致。1型糖尿病患者中儿童和年轻人比例较高。获美国药管局批准的这款新药名为Tzield。据美药管局介绍,这款药物可与某些免疫系统细胞结合,延缓1型糖尿病的病程从二期发展至三期。它能够使攻击胰岛素生成细胞的免疫细胞失活,同时增加能帮助调节免疫反应的细胞比例。Tzield通过静脉注射给药,每日一次,每疗程连续14天。美国药管局药物评估与研究中心糖尿病、血脂紊乱和肥胖部门主管沙利特说,这款新药的获批为一些高风险患者提供了新的治疗选择。发布:2022年12月1日3:35PM

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人