看似不可能的事:特制的纳米空腔的模型将光压缩到比人的头发还细一万倍

看似不可能的事:特制的纳米空腔的模型将光压缩到比人的头发还细一万倍有趣的是,早在2006年就有理论表明,衍射极限并不适用于电介质。然而,没有人能够在实际世界中证明这一点,因为它需要复杂的纳米技术,还没有人能够创造所需的电介质纳米结构。丹麦技术大学(DTU)的一个研究小组创造了一个被称为"电介质纳米腔"的装置,它成功地将光集中在比衍射极限小12倍的体积中。这一发现在光学研究中具有突破性意义,最近发表在《自然通讯》杂志上。世界上最小的光子的测量a)纳米空腔的模型,其中计算出的电场强度用色标表示。b)弓形结构中狭长的材料条周围的放大图,其中光子被挤压在一起。白线显示的是纳米结构的轮廓,以供比较。资料来源:DTU"我们将我们对真正的光子纳米技术的知识和它目前的局限性编入一台计算机。然后我们要求计算机找到一种模式,将光子收集在一个前所未有的小区域内--在一个光学纳米腔中,并且我们也能够在实验室里建造它。"光学纳米腔是经过特殊设计的结构,可以保留光,使其不能正常传播,而是来回反射,就像两面镜子相对一样。镜子越靠近对方,它们之间的光线就越强烈。在这个实验中,研究人员创造了一个蝴蝶结结构,由于其独特的形状,它在挤压光子方面特别有效。衍射极限理论描述了在一个光学系统中,光不能被聚焦到小于一半波长的体积中--例如,这适用于显微镜的分辨率。然而,纳米结构可以由比波长小得多的元素组成,这意味着衍射极限不再是一个基本限制。特别是弓形结构,可以将光压缩到非常小的体积中,这受限于弓形结构的尺寸,因此也受限于纳米制造的质量。当光被压缩时,它变得更加强烈,加强了光和材料(如原子、分子和二维材料)之间的相互作用。介质材料介质材料是电绝缘的。玻璃、橡胶和塑料是介电材料的例子,它们与金属形成对比,后者是导电的。介质材料的一个例子是硅,它经常被用于电子学,但也用于光子学。这种纳米空腔是由硅制成的,它是最先进的现代技术所依据的电介质材料。纳米空腔的材料是在DTU的洁净室实验室中开发的,而空腔所依据的图案是用DTU开发的独特的拓扑优化方法进行优化和设计的。最初是为了设计桥梁和飞机机翼而开发,现在也被用于纳米光子结构。"实现这一突破需要巨大的联合努力。它之所以能够实现,是因为我们成功地结合了DTU几个研究小组的世界领先的研究,"领导这项研究工作的SørenStobbe副教授说。高能效技术的重要突破这一发现可能对开发革命性的新技术具有决定性意义,这些技术可能会减少数据中心、计算机、电话等方面的耗能部件的数量。计算机和数据中心的能源消耗持续增长,需要更多的可持续发展的芯片架构,使用更少的能源。这可以通过用光学元件取代电路来实现。研究人员的设想是利用互联网所用的光和电子之间的相同分工,即光用于通信,电子用于数据处理。唯一的区别是,这两种功能都必须内置于同一个芯片中,这就要求将光压缩到与电子元件相同的大小。DTU的突破表明,这实际上是可能的。MarcusAlbrechtsen说:"毫无疑问,这是开发更节能技术的重要一步,例如,用于数据中心和未来计算机的光连接的纳米激光器--但还有很长的路要走。"研究人员现在将进一步工作,完善方法和材料,以找到最佳解决方案。"现在我们已经有了理论和方法,随着周围技术的发展,我们将能够制造出越来越强的光子。我相信,这只是物理学和光子纳米技术以这些原理为中心的一长串重大发展中的第一个。"索伦·斯托布说,他最近从欧洲研究理事会获得了著名的200万欧元的巩固者资助,用于开发基于新腔体的全新类型的光源。...PC版:https://www.cnbeta.com.tw/articles/soft/1333959.htm手机版:https://m.cnbeta.com.tw/view/1333959.htm

相关推荐

封面图片

量子光子学的飞跃:革命性纳米腔体重新定义光约束

量子光子学的飞跃:革命性纳米腔体重新定义光约束长期以来,物理学家一直在寻找将光子强制放入越来越小的腔体中的方法。光子的自然长度尺度是波长,当光子被迫进入一个比波长小得多的空腔时,它实际上变得更加"集中"。这种集中增强了与电子的相互作用,放大了腔体内的量子过程。然而,尽管在将光限制在深亚波长体积方面取得了巨大成功,但耗散(光吸收)效应仍然是一个主要障碍。纳米腔体中的光子吸收非常快,比波长快得多,这种耗散限制了纳米腔体在一些最激动人心的量子应用中的适用性。4个不同大小的偏振腔的3D效果图。图片来源:MatteoCeccanti创新的纳米空腔设计来自西班牙巴塞罗那ICFO的FrankKoppens教授的研究小组通过创建具有无与伦比的亚波长体积和延长寿命的纳米腔体,解决了这一难题。这些纳米空腔的面积小于100x100nm²,厚度仅为3nm,却能将光限制在更长的时间内。关键在于双曲-声子-极化子的使用,这是形成空腔的二维材料中发生的独特电磁激发。纳米空腔(横截面视图)和近场尖端的草图,与空腔模式的模拟射线状场分布叠加在一起。资料来源:MatteoCeccanti与以往基于声子极化子的空腔研究不同,这项研究利用了一种新的间接约束机制。利用氦聚焦离子束显微镜的极高精度(2-3纳米),在金基底上钻出纳米级孔洞,从而制作出纳米空腔。打孔后,在其上面转移二维材料六方氮化硼(hBN)。六方氮化硼支持被称为双曲光子极化子的电磁激元,这种激元与普通光类似,只是可以被限制在极小的体积内。当极化子通过金属边缘上方时,它们会受到金属的强烈反射,从而被束缚住。因此,这种方法避免了直接塑造氢化硼,并保持了其原始质量,使空腔中的光子高度集中且寿命长。纳米空腔及其内部磁场的艺术效果图。资料来源:MatteoCeccanti出人意料的实验成功这一发现源于在另一个项目中使用近场光学显微镜扫描二维材料结构时的一次偶然观察。近场显微镜可以激发和测量光谱中红外范围的极化子,研究人员注意到这些极化子在金属边缘的反射异常强烈。这一意料之外的观察结果引发了更深入的研究,从而发现了独特的禁锢机制及其与纳米雷形成的关系。然而,在制作和测量空腔后,研究小组却发现了一个巨大的惊喜。第一作者、巴伊兰大学物理系的HananHerzigSheinfux博士说:"实验测量结果通常比理论预测的要差,但在这种情况下,我们发现实验结果超过了乐观的简化理论预测。这一意想不到的成功为量子光子学的新颖应用和进步打开了大门,突破了我们认为可能的极限"。HerzigSheinfux博士在ICFO做博士后期间与Koppens教授一起进行了这项研究。他打算利用这些空腔来观察以前认为不可能实现的量子效应,并进一步研究双曲声子极化子行为这一引人入胜的反直觉物理学。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1416529.htm手机版:https://m.cnbeta.com.tw/view/1416529.htm

封面图片

科学家将铟原子穿入纳米纤维束以创造灵活的纳米线

科学家将铟原子穿入纳米纤维束以创造灵活的纳米线图1.(a)三维TMC晶体结构,由TMC纳米纤维组成,周围是单原子行的插层元素。(b)单个TMC纳米纤维的端面和侧面图。氯化物为金色,过渡金属为绿色,插层元素为深紫色。资料来源:东京都立大学过渡金属卤化物(TMC)的原子线是由过渡金属和第16组元素如硫、硒和碲组成的纳米结构。它们能够自我组装成具有不同维度的广泛结构,使它们成为纳米材料革命的核心,是近年来激烈研究的焦点。特别是,一类三维TMC结构引起了人们的特别兴趣,它由一束束TMC纳米纤维组成,这些纤维之间由金属原子固定在一起,在其横截面上形成一个有序的晶格(见图1)。根据对金属的选择,该结构甚至可以成为一个超导体。此外,通过使纤维束变薄,它们可以被制成可导电的柔性结构:这使得TMC纳米结构成为纳米电路中用作布线的主要候选者。然而,要把这些结构做成深入研究它们所需的长而薄的纤维,以及用于纳米技术的应用,一直都很困难。图2:(a)碲化钨纳米纤维束和最终插层结构的原子结构示意图,以及扫描透射电子显微镜图像。(b)在硅衬底上合成的三维TMC纳米纤维。资料来源:东京都立大学由助理教授YusukeNakanishi和副教授YasumitsuMiyata领导的一个团队一直在研究TMC纳米结构的合成技术。在最近的工作中,他们表明,他们可以在前所未有的大长度尺度上生产长而薄的TMC束(不含金属)。现在,他们已经使用气相反应将原子级的薄排铟穿入薄的碲化钨束。通过在500摄氏度的真空条件下将他们的长纳米纤维束暴露在铟蒸气中,金属铟原子进入构成纤维束的各个纳米纤维之间的空间,形成一个夹层(或桥接)的铟行,将纤维结合在一起。在成功地生产出大量的这些线状TMC束后,他们开始研究他们的新纳米线的特性。通过观察电阻率与温度的关系,测量数据确凿地表明,单个线束的行为像金属一样,因此能导电。这与计算机模拟结果一致,同时也证明了这些结构的有序性。有趣的是,他们发现这种结构与成批捆绑的纳米纤维略有不同,因为夹层行导致每个纳米纤维围绕其轴线轻微旋转。该团队的技术不仅限于铟和碲化钨,也不仅限于这种特定的结构。他们希望他们的工作可能会给纳米材料的开发和对其独特性能的研究带来新的篇章。...PC版:https://www.cnbeta.com.tw/articles/soft/1347753.htm手机版:https://m.cnbeta.com.tw/view/1347753.htm

封面图片

我国科学家实现纳米尺度光操控

我国科学家实现纳米尺度光操控更好地在纳米尺度操控光子实现光电融合,是未来大幅提升信息处理能力的关键。21日,记者从国家纳米科学中心获悉,该中心研究人员与合作者在极化激元领域取得新进展,大幅提高了纳米尺度的光子精确操控水平,对提升纳米成像和光学传感等应用性能具有重要意义。相关研究成果在线发表于《自然·纳米技术》杂志。与电子相比,光子具有速度快、能耗低、容量高等诸多优势,被寄予未来大幅提升信息处理能力的厚望。“然而,由于光学衍射极限的存在,很难实现纳米尺度上光信息的传输和处理,阻碍了光子优异性能的发挥。”论文通讯作者之一、国家纳米科学中心研究员戴庆介绍。极化激元是一种存在于材料表界面的特殊电磁模式,也可以认为是一种光子与物质耦合形成的准粒子。它具有优异的光场压缩能力,可以轻易突破光学衍射极限,将光波长压缩到纳米尺度进行操控,实现纳米尺度上光信息的传输和处理。利用近场光学显微镜,戴庆课题组与合作者成功构建石墨烯/α相氧化钼异质结,实现极化激元等频轮廓从开口到闭合的动态、可逆拓扑转变,并使其传播方向突破了原有晶向的限制。“我们在研究中成功将10微米波长的红外光压缩成几十纳米波长的极化激元,并调控性能实现平面内的能量聚焦和定向传播。”戴庆解释道,这就好像把大象装进粉笔盒的同时,还可以让大象在里面自由活动。对此,戴庆表示,这项研究利用极化激元成功实现纳米尺度的光操控,未来有望实现纳米尺度的光电融合。值得一提的是,《自然·纳米技术》还专门为这项研究成果配发评述文章。PC版:https://www.cnbeta.com/articles/soft/1306999.htm手机版:https://m.cnbeta.com/view/1306999.htm

封面图片

科学简单点:什么是纳米科学?

科学简单点:什么是纳米科学?"纳米"一词的意思是某物的十亿分之一。纳米科学中的"纳米"指的是纳米,即十亿分之一米(1米=3.3英尺)。那到底有多小?在这段"科学101:什么是纳米科学"的视频中,助理科学家徐杰解释了什么是纳米科学,以及阿贡纳米材料中心(CNM)如何应用纳米科学。纳米科学是一门研究微小到只有最精密的高科技显微镜才能看到的尺寸的科学。它是所有科学中最热门的话题之一。每年,数百名科学家从世界各地来到CNM,研究原子和分子尺度的材料特性。通过推进我们对这种尺度的材料结构的理解,阿贡的科学家们(如徐和许多其他科学家)对纳米尺度的特性以及如何将它们用于实际用途有了更深入的了解。凭借这些知识,他们正在设计和制造下一代材料。这些材料将带来可持续的绿色技术、更高效的大规模制造、新药物、对阿尔茨海默氏症和帕金森氏症等脑部疾病的创新治疗、改良的电池材料、更好的电子设备等。假设你身处爱丽丝梦游仙境的世界,偶然发现瓶子里有一种神奇的药水,瓶子上写着"DRINKME"。你喝了一口,就缩小了1500倍。你现在的大小只有一毫米,只有小雨滴那么高。好奇的你又喝了一口魔药,体积缩小了一千倍。你现在只有一微米大小,和雨滴中漂浮的细菌差不多大。你再喝一口,又缩小了一千倍。在达到纳米级大小后,你现在只比由两个氢原子和一个氧原子组成的单个水分子大三倍左右。在一颗雨滴中,有超过六千万亿个水分子。六千万是数字1后面加21个0。由于所有材料都是由原子和分子构成的,因此这种超微尺度的科学为社会带来了许多益处。而相同的原子和分子以不同的方式结合在一起,可以产生无穷无尽的特性。它们可以变得更柔软或更坚固,可以更好地导热或导电,可以以不同的方式反射光线,等等。在阿贡国家实验室,纳米材料中心(CNM)是美国能源部在纳米科学和技术领域的五个中心之一。通过推进我们对材料、分子和化学过程在这一尺度上的理解,这些中心的科学家们对如何产生可用于实际用途的特性有了更深入的了解。利用这些知识,他们正在设计和制造下一代材料和分子。这些研究将带来可持续绿色技术、更高效的大规模制造、新药物、阿尔茨海默氏症和帕金森氏症等脑部疾病的治疗、改良电池材料、新型量子信息和传感设备等。资料来源:阿贡国家实验室只有最高科技的显微镜才能看到的结构。纳米结构的一个或多个尺寸比人的头发丝粗细小十万倍,比金原子或水分子大不了多少。纳米结构的种类数不胜数。20世纪80年代,随着降压球的发现,人们对纳米结构产生了浓厚的兴趣。BUCKYBALL以建筑师巴克明斯特-富勒(BuckminsterFuller)的名字命名,由60个碳原子连接成足球形状。它的合成促成了碳纳米管和石墨烯的发明。石墨烯这种纳米材料是由厚度不到一纳米的碳原子组成的平面薄片。尽管超薄,石墨烯的强度却比钢铁高出200倍。碳纳米管科学家可以将石墨烯卷起形成纳米管。这种形状在许多应用中都很有吸引力,如制造超强纤维和织物。它还可作为添加剂用于强化航空航天飞行器。编译自:ScitechDaily相关文章:科学简单点:什么是超级计算?科学简单点:什么是人工智能?科学简单点:什么是量子力学?科学简单点:什么是水力发电?科学简单点:什么是核能?科学简单点:什么是气候复原力?...PC版:https://www.cnbeta.com.tw/articles/soft/1425632.htm手机版:https://m.cnbeta.com.tw/view/1425632.htm

封面图片

我国科研团队在纳米金属研究领域取得新突破

我国科研团队在纳米金属研究领域取得新突破记者从重庆大学获悉,该校材料科学与工程学院黄晓旭团队及其合作者利用自主研发的三维透射电镜技术在纳米金属研究领域取得新突破。北京时间12月1日,相关研究成果在国际学术期刊《科学》发表。研究人员介绍,该研究利用三维取向成像技术,首次实现了纳米金属塑性变形的三维电镜研究,发现纳米金属塑性应变可恢复的反常现象,并揭示了这一现象的物理本质。这一新发现发展了纳米金属塑性变形理论,将为先进纳米结构材料研发、纳米材料使役行为的预测和控制以及微纳器件功能优化提供理论指导。(央视新闻)

封面图片

光电纳米技术的创新:麻省理工学院培育出精确的纳米LED阵列

光电纳米技术的创新:麻省理工学院培育出精确的纳米LED阵列麻省理工学院的一个新平台使研究人员能够"生长"卤化物包晶纳米晶体,并精确控制每个晶体的位置和尺寸,将它们集成到纳米级发光二极管中。图为纳米晶体阵列发光效果图。图片来源:SampsonWilcox,RLE提供卤化物钙钛矿是一类材料,因其优异的光电特性以及在高性能太阳能电池、发光二极管和激光器等器件中的潜在应用而引起人们的关注。这些材料已主要应用于薄膜或微米尺寸的设备应用中。在纳米尺度上精确集成这些材料可以开辟更非凡的应用,例如片上光源、光电探测器和忆阻器。然而,实现这种集成仍然具有挑战性,因为这种精致的材料可能会被传统的制造和图案化技术损坏。为了克服这一障碍,麻省理工学院的研究人员发明了一种技术,可以在需要的地方现场生长单个卤化物钙钛矿纳米晶体,并精确控制位置,尺寸在50纳米以内。(一张纸的厚度为100000纳米)纳米晶体的尺寸也可以通过该技术精确控制,这一点很重要,因为尺寸会影响其特性。由于材料是局部生长的,具有所需的特征,因此不需要可能造成损坏的传统光刻图案化步骤。NanOLED阵列(如图所示)可应用于光通信和计算、无透镜显微镜、新型量子光源以及用于增强和虚拟现实的高密度、高分辨率显示器。图片来源:研究人员提供该技术还具有可扩展性、多功能性,并且与传统的制造步骤兼容,因此它可以使纳米晶体集成到功能性纳米级器件中。研究人员用它来制造纳米级发光二极管(nanoLED)阵列,这是一种在电激活时发光的微小晶体。这种阵列可应用于光通信和计算、无透镜显微镜、新型量子光源以及用于增强和虚拟现实的高密度、高分辨率显示器。“正如我们的工作所示,开发新的工程框架将纳米材料集成到功能性纳米器件中至关重要。通过超越纳米制造、材料工程和设备设计的传统界限,这些技术可以让我们在极端纳米尺度上操纵物质,帮助我们实现非常规设备平台,这对于满足新兴技术需求非常重要。”Landsman电气工程和计算机科学(EECS)职业发展助理教授、电子研究实验室(RLE)成员,也是描述这项工作的新论文的资深作者。Niroui的合著者包括主要作者PatriciaJastrzebska-Perfect,她是EECS研究生;朱伟坤,化学工程系研究生;MayuranSaravanapavanantham、SarahSpector、RobertoBrenes和PeterSatterthwaite,均为EECS研究生;郑莉,RLE博士后;RajeevRam,电气工程教授。该研究于7月6日发表在《自然通讯》杂志上。微小的晶体,巨大的挑战使用传统的纳米级制造技术将卤化物钙钛矿集成到片上纳米级器件中是极其困难的。在一种方法中,可以使用光刻工艺对易碎的钙钛矿薄膜进行图案化,该工艺需要可能损坏材料的溶剂。在另一种方法中,首先在溶液中形成较小的晶体,然后以所需的图案从溶液中拾取并放置。“这两种情况都缺乏控制、分辨率和集成能力,这限制了材料扩展到纳米设备的方式,”尼鲁伊说。相反,她和她的团队开发了一种方法,可以在精确的位置直接“生长”卤化物钙钛矿晶体到所需的表面,然后在该表面上制造纳米器件。他们的流程的核心是本地化纳米晶体生长中使用的解决方案。为此,他们创建了一个带有小孔的纳米级模板,其中包含晶体生长的化学过程。它们修改模板的表面和孔的内部,控制一种称为“润湿性”的特性,因此含有钙钛矿材料的溶液不会聚集在模板表面上,并将被限制在孔内。“现在就有了这些非常小的、确定性的反应堆,材料可以在其中生长,”她说。他们将含有卤化物钙钛矿生长材料的溶液施加到模板上,随着溶剂蒸发,材料生长并在每个孔中形成微小的晶体。一种多功能且可调节的技术研究人员发现孔的形状在控制纳米晶体的位置方面起着关键作用。如果使用方形孔,由于纳米级力的影响,晶体有相同的机会放置在孔的四个角中。对于某些应用来说,这可能已经足够了,但对于其他应用来说,纳米晶体的放置需要更高的精度。通过改变孔的形状,研究人员能够设计这些纳米级的力,使晶体优先放置在所需的位置。当溶剂在孔内蒸发时,纳米晶体会经历压力梯度,产生定向力,确切的方向由孔的不对称形状确定。Niroui说:“这使我们不仅在生长方面,而且在这些纳米晶体的放置方面都具有非常高的精度。”他们还发现可以控制井内形成的晶体的大小。改变孔的大小以允许内部更多或更少的生长溶液产生更大或更小的晶体。通过制造精确的nanoLED阵列展示了其技术的有效性。在这种方法中,每个纳米晶体都被制成发光的纳米像素。这些高密度nanoLED阵列可用于片上光通信和计算、量子光源、显微镜以及增强和虚拟现实应用的高分辨率显示器。未来,研究人员希望探索这些微小光源的更多潜在应用。他们还想测试这些设备的极限,并努力将它们有效地整合到量子系统中。除了纳米级光源之外,该过程还为开发基于卤化物钙钛矿的片上纳米器件开辟了其他机会。他们的技术还为研究人员提供了一种更简单的方法来研究单个纳米晶体水平的材料,他们希望这将激励其他人对这些和其他独特材料进行更多研究。Jastrzebska-Perfect补充道:“通过高通量方法研究纳米级材料通常需要对材料进行精确定位并按该规模进行设计。通过提供局部控制,我们的技术可以改善研究人员研究和调整材料性能以适应不同应用的方式。”“该团队开发了一种非常聪明的方法,可以在基板上确定性地合成单个钙钛矿纳米晶体。他们可以以前所未有的规模控制纳米晶体的精确放置,从而为基于单纳米晶体制造高效纳米级LED提供了一个平台。”加州大学伯克利分校电气工程和计算机科学教授AliJavey说道,他没有参与这项研究。“这是一项令人兴奋的工作,因为它克服了该领域的基本挑战。”...PC版:https://www.cnbeta.com.tw/articles/soft/1370463.htm手机版:https://m.cnbeta.com.tw/view/1370463.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人