我国科研团队在纳米金属研究领域取得新突破

我国科研团队在纳米金属研究领域取得新突破记者从重庆大学获悉,该校材料科学与工程学院黄晓旭团队及其合作者利用自主研发的三维透射电镜技术在纳米金属研究领域取得新突破。北京时间12月1日,相关研究成果在国际学术期刊《科学》发表。研究人员介绍,该研究利用三维取向成像技术,首次实现了纳米金属塑性变形的三维电镜研究,发现纳米金属塑性应变可恢复的反常现象,并揭示了这一现象的物理本质。这一新发现发展了纳米金属塑性变形理论,将为先进纳米结构材料研发、纳米材料使役行为的预测和控制以及微纳器件功能优化提供理论指导。(央视新闻)

相关推荐

封面图片

12月1日,《科学》杂志刊登了重庆大学科学家的重要成果:该校材料科学与工程学院教授、电子显微镜中心主任黄晓旭及其团队,利用自主研

12月1日,《科学》杂志刊登了重庆大学科学家的重要成果:该校材料科学与工程学院教授、电子显微镜中心主任黄晓旭及其团队,利用自主研发的三维透射电镜技术,在世界上首次实现对纳米金属塑性变形的研究,并发现纳米金属塑性变形后其内部晶体取向可回转这一反常现象。这一重大发现标志着黄晓旭团队自主研发的三维透射电镜技术,经过十多年的发展,正式从原理进入成熟应用阶段,实现了纳米材料研究从二维到三维的跨越。(科技日报)

封面图片

我国科研人员在 DNA 转座子研究领域取得新突破

我国科研人员在DNA转座子研究领域取得新突破中国科学院动物研究所科研团队基于自然界丰富的动物遗传资源开展了迄今为止最大规模的DNA转座子活性筛选,从而获得了目前最大的活跃DNA转座子数据集,大幅扩展了现有基因工程工具箱。该成果6月5日在国际学术期刊《细胞》(CELL)在线发表。DNA转座子是存在于染色体DNA上可自主复制和位移的基本单位,是基因组中一段可移动的DNA序列,可以通过切割、重新整合等一系列过程从基因组的一个位置“跳跃”到另一个位置,对于生命科学研究具有非常重要的意义。(央视新闻)

封面图片

我国在量子研究领域取得重要突破

我国在量子研究领域取得重要突破今天,记者从清华大学获悉,清华大学段路明研究组近日在量子模拟计算领域取得重要突破,首次实现512离子二维阵列的稳定囚禁冷却以及300离子量子比特的量子模拟计算。该工作实现了国际上最大规模具有单比特分辨率的多离子量子模拟计算,将原来的离子量子比特数国际记录(61离子)往前推进了一大步,并首次实现基于二维离子阵列的大规模量子模拟。该成果研究论文近日发表于国际权威学术期刊Nature(《自然》),被《自然》审稿人称为量子模拟领域的“巨大进步”,“值得关注的里程碑”。(中青报)

封面图片

“不插电” 也能发光发电 上海科研团队在智能纤维领域取得重要突破

“不插电”也能发光发电上海科研团队在智能纤维领域取得重要突破记者近日从东华大学获悉,该校材料科学与工程学院先进功能材料课题组在《科学》上发表了题为“Singlebody-coupledfiberenableschiplesstextileelectronics”的研究论文。该研究提出了基于“人体耦合”的能量交互机制,并成功研发出集无线能量采集、信息感知与传输等功能于一体的新型智能纤维,由其编织制成的智能纺织品无需依赖芯片和电池便可实现发光显示、触控等人机交互功能,这一突破性成果为人与环境的智能交互开辟了新可能,具有广泛应用前景。(央广网)

封面图片

科学家震惊于纳米晶金属的自愈能力

科学家震惊于纳米晶金属的自愈能力在桑迪亚国家实验室(SandiaNationalLaboratories)发现的纳米级金属自愈合艺术效果图中,绿色标示出裂缝形成的位置,然后重新融合在一起。红色箭头表示意外触发这一现象的拉力方向。资料来源:丹-汤普森,桑迪亚国家实验室桑迪亚国家实验室的一组研究人员在对纳米晶金属进行断裂实验时,发现了这一令人难以置信的现象。研究结果最近发表在《自然》杂志上。在这一发现之前,人们有理由认为自愈金属只能出现在科幻小说中。德克萨斯农工大学材料科学与工程系教授、最近这项研究的共同作者MichaelDemkowicz博士却不这么认为。十年前,在麻省理工学院材料科学与工程系担任助理教授时,Demkowicz和他的学生就预测到了金属的自愈性。"我们的出发点并不是要找到自愈。我的学生GuoxiangXu当时正在做断裂模拟,"Demkowicz说。"我们无意中在他的一个模拟中观察到了自发愈合,于是决定继续跟进"。当时,就像现在一样,2013年的结果令人惊讶。Demkowicz补充说,他、他的学生和同事都对最初的理论有些怀疑。不过,他的模拟模型在随后的几年里被其他研究人员多次复制和扩展。Demkowicz说:"很明显,模拟并没有错误,因为其他人在他们的建模工作中也看到了同样的效果。"2013年的模型和最近的实验都使用了纳米晶金属,这种金属的晶体结构或晶粒大小以纳米级(百万分之一毫米)测量。Demkowicz表示,虽然这种金属在工程应用中并不广泛,但大多数金属都能以这种形式制造。他进一步解释说,纳米晶金属使研究自愈合变得更容易,因为它们的晶粒尺寸小,可以产生更多的微结构特征,即使是微小的裂缝也能与之相互作用。这两项研究都发现,晶界这一特征会影响裂纹愈合,具体取决于晶界相对于裂纹的迁移方向。Demkowicz补充说,这些特征在许多金属和合金中都很常见,而且可以加以控制。Demkowicz说:"当前工作的主要影响是将最初的理论预测'从绘图板上移开',并证明它在现实中发生了。我们还没有真正开始优化自愈微结构。找出促进自愈合的最佳改变是未来工作的一项具有挑战性的任务。"这项工作的潜在应用可能会有很大不同。Demkowicz认为,在晶粒尺寸较大的传统金属中也有可能实现自愈,但还需要未来的研究。2013年的理论和最近的实验都有一个共同的条件,那就是两者都是在真空环境中进行的,完全没有外来物质。这些外来物质可能会干扰裂纹表面的粘合或冷焊能力。即使存在这种限制,但仍有可能应用于航天技术或不接触外界空气的内部裂缝。经过十年的努力,Demkowicz的理论在桑迪亚国家实验室的实验中取得了成果。在目前的研究中,Demkowicz能够验证最近观察到的现象是否与他最初的模拟模型相符。"这是一个了不起的实验。不过,我认为这也是理论上的一大胜利,"Demkowicz说。"材料的复杂性往往使我们难以自信地预测新现象。这一发现让我看到了希望,我们的材料行为理论模型正走在正确的道路上。"...PC版:https://www.cnbeta.com.tw/articles/soft/1389121.htm手机版:https://m.cnbeta.com.tw/view/1389121.htm

封面图片

我国科研团队稀土元素高效膜分离技术取得重要进展

我国科研团队稀土元素高效膜分离技术取得重要进展兰州大学消息,该校稀有同位素前沿科学中心陈熙萌、李湛团队的一项题为“构建二维异质结构通道:利用工程化生物膜和石墨烯进行精准的钪筛分”的突破性研究成果发表在国际期刊《先进材料》上。研究人员利用工程生物膜和氧化石墨烯纳米片之间的二级结构,构建了一种具有高效分离性能的二维异质通道。李湛介绍,这项全新的膜技术不但实现了钪离子的选择性识别与筛分分离,还对其他稀土元素的分离和提纯具有重要意义。(科技日报)

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人