天文学家确定罕见的大质量伽马射线暴GRB 210905A的来源

天文学家确定罕见的大质量伽马射线暴GRB210905A的来源在这一发现之后的几个月里,一个世界性的天文学家团队开始研究爆炸的余辉,以了解是什么原因造成的。意大利国家天体物理研究所(INAF)的研究员AndreaRossi博士领导该小组。来自巴斯大学的CaroleMunDELL教授也参与其中。科学家们得出的结论是,引起辉光的GRB是迄今为止发现的最遥远和最有能量的GRB之一。此外,它的余辉也是有史以来最耀眼的之一。科学家们还惊讶地看到,尽管GRB210905A的年龄很大,但它所显示的特性(如X射线波长)与那些由宇宙爆炸产生的GRB惊人地相似,而这些宇宙爆炸发生的时间更晚,而且离地球更近。Rossi博士说:"由于我们的观察,我们可以得出结论,负责GRB的机制并不随着宇宙的发展而演变。"巴斯大学银河系外天文学HirokoSherwin主席和天体物理学负责人蒙代尔教授也参与了这项研究。她说:"作为迄今为止发现的最强大和最遥远的宇宙爆炸之一,这个罕见的伽马射线暴加入了一个在宇宙历史早期发现的这类爆炸的小俱乐部--而且这个爆炸来自于迄今为止探测到的最明亮的宿主星系。这一发现让我们对大质量恒星--它们生得快,死得也快--在宇宙中早期形成和演化有了新的认识和确认。"这项研究中观察到的GRB的形状较"长",这意味着它来自一个黑洞,该黑洞是由大质量恒星的灾难性坍缩产生的。"短的"GRB通常与紧凑物体的碰撞有关,如中子星。这个光爆首先被绕地球轨道上的尼尔·盖尔斯·斯威夫特天文台的仪器以及在行星际空间运行的GRB猎取望远镜Konus-WIND探测到。天文学家使用地面和太空中的主要望远镜阵列进行的观测又持续了八个月,这些设备包括哈勃、雨燕和钱德拉望远镜。Rossi说:"我们的研究再次表明,在处理瞬时现象时,需要能够快速行动并拥有正确的工具。必须既能在现象仍然明亮时进行观测,以获得清晰明确的结果,然后需要使用那些能够覆盖大的波长范围的设施,从伽马射线到X射线,光学和无线电。"研究人员期望在最近发射的詹姆斯-韦伯太空望远镜的帮助下加深他们对原始爆炸的理解。这个望远镜刚刚开始展示其令人难以置信的能力,有望揭开这个GRB起源的大质量恒星诞生的环境特征。参与GRB研究的大多数天文学家都是STARGATE合作项目的成员,该项目将所有利用ESO设施活跃于GRB后续研究的人聚集在一起。Mundell教授说:"这是全世界科学家之间合作和协调的一个激动人心的例子,他们共同收集、合并和解释使用地面和太空中的一套望远镜和探测器拍摄的数据,在整个电磁波谱的能量范围内捕捉来自这个爆发的消逝的光线--而且是实时的。"...PC版:https://www.cnbeta.com.tw/articles/soft/1335463.htm手机版:https://m.cnbeta.com.tw/view/1335463.htm

相关推荐

封面图片

超越可见光 天文学家揭开伽马射线暴的秘密

超越可见光天文学家揭开伽马射线暴的秘密质量超过太阳十倍的恒星会发生大爆炸,变成黑洞,并伴随着可通过太空望远镜探测到的短暂而不可预测的伽马射线暴。对这些爆发及其相关光学辐射的详细研究,如2021年的GRB210619B所见,为了解这些恒星爆炸的运作及其产生的条件提供了宝贵的数据。当恒星的质量超过太阳质量的10倍时,这种情况就会导致内核收缩,外壳爆炸性破裂。这将导致银河系规模的超强爆炸。质量最大的恒星就是这样变成黑洞的。这些爆炸伴随着强烈的伽玛射线暴--一种光子流,其能量比我们熟悉的可见光量子大几百万倍。伽马射线暴是一个极其短暂的事件,持续时间从几分之一秒到几百秒不等,而且无法预测。我们无法预测伽马射线暴在天空中的准确位置和准确时间。此外,由于地球大气层会阻挡伽马射线辐射,伽马射线暴只能通过太空望远镜探测到。伽马射线暴从20世纪60年代末开始被记录。多年来,科学家们只记录到人眼看不到的伽马射线辐射。然而,有人认为这些伽马射线暴可能伴随着从地球上可以观测到的光学辐射。事实上,1999年1月23日首次观测到了这种辐射。为了能够快速探测到光学辐射,科学家们开发了机器人望远镜,能够直接从爆发地点收集实时数据。2021年6月20日,位于捷克共和国和西班牙的望远镜以及位于北高加索地区、由喀山联邦大学拥有的俄罗斯Mini-MegaTORTORA系统观测到了GRB210619B,这是迄今为止记录到的最强大的伽马射线暴之一。这些望远镜在伽马射线闪光28秒后开始记录发光余辉。通过三台望远镜同时获取的数据,可以重建光曲线的整体形状、不同时间的光学光谱斜率以及光学辐射的早期多波段演变。"我们很幸运。首先,我们观测到了相当明亮的余辉。其次,我们通过频繁捕捉图像,以高时间分辨率观测到了余辉。第三,我们获得了有关光辐射光谱的信息。在Mini-MegaTORTORA系统中,我们可以同时使用一组光学滤光片进行观测,包括蓝色和可见光(黄绿色)。换句话说,我们不仅测量了整体亮度,还测量了特定单色显示的亮度。"这项研究的合著者、HSE物理系副教授AntonBiryukov说:"这是一个罕见的、几乎独一无二的案例。"有了包括光学范围在内的各种波段辐射的详细数据,就有可能确定与光学辐射起源区域的伽马射线暴相关介质的物理参数。"研究小组获得的大量数据集使我们能够研究伽马射线暴现象的内部运作。科学家解释说:"这就好比用外科手术解剖伽马射线暴,窥探其内部机制:检查运动中的粒子、粒子的能量水平、周围介质的密度以及相关磁场的特征。"研究报告的作者得出结论,在伽马射线暴期间观测到的发光现象是由高能带电粒子的运动引起的,这些粒子在以强大磁场为特征的稀薄介质中表现出几乎与光速无异的速度。"伽马射线暴就像来自早期宇宙的信标。我们在几十亿光年的距离上记录这些现象。"比留科夫解释说:"这些罕见的来源让我们有机会了解数十亿年前恒星的运行情况以及它们的存在是如何结束的,探索包裹它们的星际环境,比如星际气体的成分和数量,以及它们是如何与恒星喷出物相互作用的。"但是,研究伽马射线暴不仅能扩大我们对最大规模遥远恒星的了解。从基础物理学的角度来看,伽马射线暴是一个天然的物理实验室,它展现了可以想象到的最极端的条件,包括超高的能量、速度、密度和引力。正是在这些状态下,科学家们可以检验人类现有的物理理论。...PC版:https://www.cnbeta.com.tw/articles/soft/1374493.htm手机版:https://m.cnbeta.com.tw/view/1374493.htm

封面图片

发现宇宙进化的线索:天文学家测量伽马射线爆发的隐藏能量

发现宇宙进化的线索:天文学家测量伽马射线爆发的隐藏能量伽马射线暴GRB191221B的艺术家印象。资料来源:Urata等人/Yu-SinHuang/MITOS科学有限公司伽玛射线暴不仅释放伽玛射线,还释放无线电波、光学光和X射线。当爆炸能量转换为发射能量的效率很高时,爆炸的总能量可以通过将所有发射的能量相加来确定。然而,当转换效率低或不确定时,只测量发射的能量不足以计算出总的爆炸能量。现在,一个天体物理学家小组通过利用光的偏振作用成功地测量了伽马射线暴的隐藏能量。该小组由来自国立中央大学和MITOS科学有限公司的YujiUrata博士和来自东北大学跨学科前沿研究所(FRIS)的KenjiToma教授领导。他们发现的细节最近发表在《自然-天文学》杂志上。当一个电磁波被极化时,这意味着该波的振荡向一个方向流动。虽然从恒星发出的光是不偏振的,但该光的反射是偏振的。许多日常用品,如太阳镜和遮光板,都是利用偏振来阻挡统一方向的光线的眩光。测量偏振的程度被称为偏振测量法。在天体物理观测中,测量一个天体的偏振度并不像测量其亮度那样容易。但是它提供了关于天体物理条件的宝贵信息。该小组研究了发生在2019年12月21日的伽马射线暴(GRB191221B)。利用欧洲南方天文台的甚大望远镜和阿塔卡马大型毫米/亚毫米阵列--世界上最先进的一些光学和射电望远镜--他们计算了来自GRB191221B的快速衰减发射的极化。然后他们成功地同时测量了光学和无线电偏振,发现无线电偏振度明显低于光学偏振度。Toma说:"这种在两个波长上的偏振差异揭示了伽玛射线暴发射区域的详细物理条件。特别是,它使我们能够测量以前无法测量的隐藏能量。"当考虑到隐藏的能量时,研究小组发现总能量比以前的估计大了大约3.5倍。由于爆炸能量代表了原生星的引力能量,能够测量这个数字对于确定恒星的质量具有重要的影响。Toma补充说:"知道对原生星真实质量的测量将有助于理解宇宙的进化历史。如果我们能够探测到它们的长伽马射线暴,就可以发现宇宙中的第一颗恒星"。...PC版:https://www.cnbeta.com.tw/articles/soft/1342009.htm手机版:https://m.cnbeta.com.tw/view/1342009.htm

封面图片

天文学家发现恒星死亡的新方式:碰撞

天文学家发现恒星死亡的新方式:碰撞我们已经知道,恒星可以相互吞噬,从对方身上撕扯出能量和物质,直到只剩下残渣。但是现在,天文学家已经发现了恒星之间的碰撞实际上也能引发恒星的死亡。新的证据可以在《自然-天文学》上发表的一篇论文中找到,表明伽马射线暴可以由恒星碰撞产生。伽马射线暴动画来自NASA图片来源:NASAGoddard/YouTubeNASA戈达德/YouTube这些证据是利用智利的GaminiSouth望远镜和北欧光学望远镜,以及NASA的哈勃太空望远镜发现的。天文学家利用这些望远镜对Swift天文台在2019年发现的伽玛射线暴进行了回访。这些爆发被命名为GRB191019A,时间很长,持续了一分钟还多。研究人员设法找到了爆发的源头,在一个古老星系的核心深处,离核心大约100光年的地方。基于这些观察,天文学家认为,两个紧凑物体的碰撞导致了伽马射线暴的产生,而且它不仅仅是一颗大质量恒星的坍缩。相反,两颗恒星的死亡似乎为伽马射线暴提供了动力。这一发现特别吸引人,因为这个星系是如此古老,大多数足以在产生伽马射线的超新星中死亡的巨大恒星早已死亡。因此,当这个爆发将他们带回那个特定的星系时,天文学家们感到很困惑。然而,这个新的证据确实突出了一个可怕的现实--即使是恒星碰撞也会导致大质量恒星的死亡,并且这在未来可能会对其他恒星系统造成破坏。...PC版:https://www.cnbeta.com.tw/articles/soft/1367801.htm手机版:https://m.cnbeta.com.tw/view/1367801.htm

封面图片

不是黑洞:天文学家可能需要重新思考伽玛射线暴是如何形成的

不是黑洞:天文学家可能需要重新思考伽玛射线暴是如何形成的一种叫做短时GRB的GRB是在两颗中子星碰撞时产生的。这些超密集的恒星其质量相当于我们的太阳,被压缩到比一个城市还要小,在其最后时刻触发GRB之前,在时空中产生称为引力波的涟漪。到目前为止,空间科学家们基本上同意为这种高能和短暂的爆发提供动力的"引擎"必须总是来自一个新形成的黑洞。然而,由英国巴斯大学的NuriaJordana-Mitjans博士领导的一个国际天体物理学家团队的新研究正在挑战这一科学正统观念。根据该研究的发现,一些短时的GRB是由超大质量星(又称中子星残余物)的诞生引发的,而不是黑洞。Jordana-Mitjans博士说。"这样的发现很重要,因为它们证实了新生的中子星可以为一些短时间的GRB提供动力,以及伴随着它们被探测到的跨电磁波谱的明亮发射。这一发现可能为定位中子星合并提供了一种新的方法,从而在我们搜索天空中的信号时找到引力波发射器。"相互竞争的理论关于短时的GRB,人们知道的很多。它们的生命开始于两颗中子星,它们一直在螺旋式地接近,不断地加速,最后碰撞。而从坠毁地点,一个喷射性的爆炸释放出伽马射线辐射,从而形成GRB,随后是一个较长的余辉。一天后,在爆炸过程中向四面八方排出的放射性物质产生了研究人员所说的千新星。然而,在两颗中子星相撞后究竟剩下什么?是碰撞的"产物"-并因此成为赋予GRB非凡能量的动力源,一直是一个争论不休的问题。由于巴斯领导的研究发现,科学家们现在可能更接近于解决这一争论。空间科学家们在两种理论之间存在分歧。第一种理论认为,中子星合并后短暂地形成了一颗质量极大的中子星,只是这颗星随后在几分之一秒内坍缩成一个黑洞。第二种理论认为,两颗中子星会形成一颗不那么重的中子星,其寿命更长。因此,几十年来一直困扰着天体物理学家的问题是:短时的GRB是由黑洞驱动还是由长寿命的中子星诞生驱动?迄今为止,大多数天体物理学家都支持黑洞理论,认为要产生GRB,就必须让大质量的中子星几乎瞬间坍缩。电磁信号天体物理学家通过测量产生的GRB的电磁信号来了解中子星碰撞的情况。源自黑洞的信号预计会与来自中子星残余物的信号不同。在这项研究中探索的GRB(被命名为GRB180618A)的电磁信号使Jordana-Mitjans博士和她的合作者清楚地认识到,一定是中子星残余物而不是黑洞引起了这个爆发。Jordana-Mitjans博士在阐述时说:"我们的观测首次突出了来自一颗幸存的中子星的多个信号,这颗中子星在最初的中子星双星死亡后至少生存了一天。"研究报告的共同作者、巴斯大学银河系外天文学教授CaroleMunDELL教授说,她在巴斯大学担任银河系外天文学的HirokoSherwin客座教授。"我们很高兴能捕捉到这个短伽马射线暴的早期光学光线--如果不使用机器人望远镜,这在很大程度上还是不可能做到的。但是当我们分析我们的数据时,惊讶地发现我们无法用GRB的标准快速坍缩黑洞模型来解释它。我们的发现为即将到来的用鲁宾天文台LSST等望远镜进行的天空调查带来了新的希望,用这些望远镜可能会发现数十万颗这样的长寿命中子星在坍缩成为黑洞之前发出的信号。"消失的余辉最初让研究人员感到困惑的是,GRB180618A之后的余辉的光学光线在短短35分钟后就消失了。进一步的分析表明,由于某种持续的能量来源从后面推动它,导致负责如此短暂发射的物质正在以接近光速的速度膨胀。"我们的发现为即将到来的用鲁宾天文台LSST等望远镜进行的天空调查带来了新的希望,用这些望远镜我们可能会发现数十万颗这样的长寿命中子星在坍缩成为黑洞之前发出的信号。"更令人惊讶的是,这种发射有一个新生的、快速旋转的和高度磁化的中子星的印记,称为毫秒级磁星。研究小组发现,GRB180618A之后的磁星在放慢速度的同时,正在重新加热撞击后的剩余物质。在GRB180618A中,磁星驱动的光学发射比经典千新星的预期亮度要高一千倍。...PC版:https://www.cnbeta.com.tw/articles/soft/1338209.htm手机版:https://m.cnbeta.com.tw/view/1338209.htm

封面图片

天文学家用韦伯望远镜揭开宇宙最古老低质量星系的秘密

天文学家用韦伯望远镜揭开宇宙最古老低质量星系的秘密罗格斯大学的天文学家利用詹姆斯-韦伯太空望远镜研究了沃尔夫-伦德马克-梅洛特星系,揭开了宇宙早期恒星形成的历史。他们的发现为星系如何演化以及温度在恒星形成中的作用提供了新的见解。资料来源:美国国家航空航天局面向宇宙的“考古发掘”艺术与科学学院物理与天文学系助理教授克里斯汀-麦奎恩(KristenMcQuinn)说:"通过如此深入的观察和如此清晰的观察,我们已经能够有效地回到过去,基本上是在进行一种考古挖掘,寻找宇宙历史早期形成的低质量恒星。"她领导的这项研究发表在《天体物理学报》。McQuinn认为,罗格斯大学高级研究计算办公室管理的Amarel高性能计算集群使研究小组能够计算银河系的恒星发展史。这项研究的一个方面是将一次大规模计算重复600次。她补充说,这项重大计算工作还有助于确认望远镜校准和数据处理程序,这将使更广泛的科学界受益。WLM星系部分区域的两幅景象,一幅由美国宇航局哈勃太空望远镜拍摄(左),另一幅由詹姆斯-韦伯太空望远镜拍摄。图片来源:Science:NASA,ESA,CSA,IPAC,KristenMcQuinn(RU),ImageProcessing:ZoltG.Levay(STScI),AlyssaPagan(STScI)低质量星系的重要性麦奎恩对所谓的"低质量"星系特别感兴趣。因为它们被认为是早期宇宙的主宰,研究人员可以利用它们来研究恒星的形成、化学元素的演化以及恒星形成对星系气体和结构的影响。它们很微弱,分布在天空中,构成了本地宇宙中的大多数星系。像韦伯望远镜这样先进的望远镜让科学家们能够近距离观察它们。WLM是德国天文学家马克斯-沃尔夫(MaxWolf)于1909年发现的一个"不规则"星系,这意味着它不具有明显的形状,如螺旋形或椭圆形,瑞典天文学家克努特-伦德马克(KnutLundmark)和英国天文学家菲力伯特-雅克-梅洛特(PhilibertJacquesMelotte)于1926年对它进行了更详细的描述。它位于本星系群的外围,本星系群是一个哑铃状的星系群,其中包括银河系。麦奎因指出,由于位于本星系群的边缘,WLM免受了与其他星系交融的破坏,使其恒星群处于原始状态,有利于研究。天文学家之所以对WLM感兴趣,还因为它是一个充满活力的复杂星系,拥有大量气体,能够积极地形成恒星。WLM银河系中的恒星形成为了了解银河系恒星形成的历史--即恒星在宇宙不同时期的诞生速度,麦奎恩和她的团队利用这架望远镜煞费苦心地将包含成千上万颗恒星的天空区域归零。为了确定恒星的年龄,他们测量了恒星的颜色(代表温度)和亮度。麦奎因说:"我们可以利用我们对恒星演化的了解,以及这些颜色和亮度所表明的情况,基本上确定星系恒星的年龄。"研究人员随后对不同年龄的恒星进行了计数,并绘制出了宇宙历史上恒星的诞生率。以这种方式对恒星进行编目向研究人员表明,随着时间的推移,WLM产生恒星的能力在起伏。研究小组的观测结果证实了科学家们早些时候利用哈勃太空望远镜所做的评估,这些观测结果表明,在宇宙历史的早期,该星系曾在30亿年的时间里产生过恒星。它停顿了一段时间,然后又重新点燃。她相信这种停顿是由早期宇宙的特定条件造成的:"那时的宇宙真的很热。我们认为,宇宙的温度最终加热了这个星系中的气体,使恒星的形成一度停止。冷却期持续了几十亿年,然后恒星形成再次开始。"这项研究是美国国家航空航天局"早期发布计划"的一部分,该计划指定科学家与太空望远镜科学研究所合作开展研究,旨在突出韦伯的能力,帮助天文学家为未来的观测做好准备。美国国家航空航天局于2021年12月发射了韦伯望远镜。这个大型镜面仪器在距离地球一百万英里的地方围绕太阳运行。科学家们争先恐后地在望远镜上研究一系列课题,包括早期宇宙的状况、太阳系的历史以及系外行星的搜寻。麦奎因说:"这项计划将产生许多尚未完成的科学成果。"相关文章:韦伯望远镜在极端恒星环境中发现生命的前身:水和简单的有机分子...PC版:https://www.cnbeta.com.tw/articles/soft/1422060.htm手机版:https://m.cnbeta.com.tw/view/1422060.htm

封面图片

天文学家在古星系中心检测到长伽马射线爆发

天文学家在古星系中心检测到长伽马射线爆发一个国际天文学家小组在一个古老的星系中发现了一次长伽马射线爆发,这可能是由两颗独立的中子星合并引起的,这挑战了对此类爆发原因的传统理解。该团队使用多台望远镜分析了2019年的爆发,尽管考虑了其他潜在原因,但他们希望未来的观测能够澄清该现象的起源。过去普遍的共识是,只有当一颗非常重的恒星在其生命末期塌缩成超新星时,才会发生至少几秒钟的长伽马射线爆发。2022年,当两颗一生都互相绕转的大恒星最终变成中子星并碰撞成千新星时,发现了长伽马射线爆发的第二个潜在触发因素。现在到了2023年,长伽马射线暴似乎可以以第三种方式发生。“我们的数据表明,这是两颗独立的中子星合并的情况。因此,中子星并不是一生都在一起的。”首席研究员安德鲁·莱文(拉德堡德大学)说道。“我们怀疑中子星是被银河系中心许多周围恒星的引力推到一起的。”研究小组研究了尼尔·盖尔斯·斯威夫特天文台于2019年10月19日观测到的伽马射线爆发的后果。他们使用智利的双子座南望远镜、加那利拉帕尔马岛的北欧光学望远镜和哈勃太空望远镜。他们的观察表明,爆发是在一个古老星系中心附近引起的。这提供了两个指向两个来源合并的论据。第一个论点是,古代星系中几乎不存在可以塌缩成超新星的重恒星,因为重恒星通常出现在年轻星系中。此外,超新星会发出明亮的可见光,这在本例中没有被观察到。第二个论点是星系中心是繁忙的地方。有数十万颗普通恒星、白矮星、中子星、黑洞和尘埃云都围绕着超大质量黑洞运行。总共代表了超过1000万颗恒星和天体挤在几光年宽的空间中。“这个区域相当于我们的太阳和下一颗恒星之间的距离,”莱文解释道。“因此,在星系中心发生碰撞的可能性比我们所在的郊区高得多。”研究人员仍在为其他解释留下空间。长时间的伽马射线爆发也可能是由于中子星以外的致密天体(例如黑洞或白矮星)的碰撞造成的。未来,研究人员希望能够在引力波的同时观测长伽马射线爆发。这将帮助他们对辐射的来源做出更明确的陈述。...PC版:https://www.cnbeta.com.tw/articles/soft/1370397.htm手机版:https://m.cnbeta.com.tw/view/1370397.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人