想吃得健康又想拯救地球?科学家建议用这种食物代替牛肉

想吃得健康又想拯救地球?科学家建议用这种食物代替牛肉由AsafTzachor博士领导的一项新研究与一个国际科学家团队合作,评估了一个种植螺旋藻的最先进的生物技术系统。该系统由VaxaImpactNutrition公司开发和运营,位于冰岛的ONPower地热公园,并利用了通过Hellisheidi发电站获得的资源,包括用于照明和电力使用的可再生电力,用于温度控制的冷热水流,用于培养的淡水,以及用于生物固定的二氧化碳。研究小组发现,该系统生产的螺旋藻在蛋白质、必需脂肪酸和铁方面的营养质量优于牛肉,可以作为日常饮食中肉类的健康、安全和更可持续的替代品。生物技术公司Vaxa在冰岛的设施,其生产系统的运作根据这项研究,每用冰岛螺旋藻取代一公斤牛肉,消费者将节省约1400升水,340平方米的肥沃土地,以及近100公斤排放到大气中的温室气体。此外,这种藻类可以以不同的形式消费,包括作为湿生物质,或以糊状、粉状或丸状形式。例如,人们可以用冰岛螺旋藻粉作为面食、煎饼和糕点的配料,或饮用冰岛螺旋藻奶昔。虽然肉类在人类饮食中的作用是有目共睹的,但其对生态环境的影响是相当大的,也是有害的。饲养肉牛需要耕地和饲料,并将温室气体排放到大气中,导致气候变化和全球变暖。一公斤牛肉需要大约1450升水和340平方米的肥沃土地。此外,生产一公斤牛肉会导致排放约100公斤的温室气体。莱希曼大学可持续发展学院的阿萨夫-扎乔尔博士随着对动物源性蛋白质需求的增长,畜牧业造成的损害也在增加。作为回应,人类正在寻找新的方法来确保其营养安全,包括供应替代蛋白质来源、维生素和基本矿物质。藻类,特别是螺旋藻被认为是地球上最有效的食物生产者之一,可以用不同的技术进行培养。在这项研究中,螺旋藻是在封闭、受控的系统中培养的,使用先进的光子管理方法(控制暴露在所需的波长下),完全与冰岛的恶劣环境隔离。这种生物技术系统对环境和气候条件的波动具有特殊的适应性。它可以以模块化的方式部署在世界不同地区。此外,螺旋藻是一种自养生物,依赖于光合作用和二氧化碳的供应。因此,与许多其他替代蛋白质来源不同,种植这种食物来源可以从大气中清除温室气体,缓解气候变化。莱希曼大学可持续发展学院的阿萨夫-扎乔尔博士表示:"营养安全、减缓气候变化和适应气候变化可以齐头并进。消费者必须做的就是在他们的膳食和饮食中采用一点冰岛螺旋藻,而不是牛肉。它更健康,更安全,也更可持续。无论我们希望在这个世界上看到什么变化,都应该体现在我们的饮食选择上"。...PC版:https://www.cnbeta.com.tw/articles/soft/1339123.htm手机版:https://m.cnbeta.com.tw/view/1339123.htm

相关推荐

封面图片

科学家在大米孔隙中培育牛肉细胞 制造富含蛋白质的新型太空食品

科学家在大米孔隙中培育牛肉细胞制造富含蛋白质的新型太空食品我们目前的耕作方式并不是特别可持续,而且随着数十亿人口的增加,预计对环境的影响只会越来越大。因此,未来的食物可能会与我们习惯的食物大相径庭,无论是在实验室里种植肉类、吃昆虫来获取蛋白质,还是激发微生物来生产营养粉末。现在,韩国的科学家们创造出了一种可能成为未来主食的新型食品--牛肉-大米杂交食品。其原理类似于在实验室中培育肉类细胞,只不过这次他们是在米粒的孔隙中培育肉类细胞。这种结构为动物细胞提供了一个稳定的支架,而大米中的某些分子则帮助它们茁壮成长。研究人员首先在大米上涂一层鱼明胶,这有助于牛肉细胞的粘附。种上牛肌肉和脂肪干细胞后,大米被放置培养9到11天。最终得到的粉红色大米看起来有点恐怖,但完全符合食品安全标准,而且营养相当丰富。研究人员蒸煮了他们的牛肉饭,并进行了一系列食品工业分析,以调查这种非自然的创造。他们发现,与普通米饭相比,牛肉饭的蛋白质含量高出8%,脂肪含量高出7%,口感更硬更脆。据报道,含有更多肌肉细胞的牛肉饭闻起来更像牛肉或杏仁,而脂肪含量更高的牛肉饭闻起来更接近奶油、黄油或椰子油。牛肉-大米的环境足迹比传统养殖肉类小得多。研究人员估计,他们的研究成果每100克蛋白质释放的二氧化碳应少于6.27千克(13.82磅),而牛肉则为50千克(110磅)。成本也会低得多,牛肉-大米的成本约为每公斤2.23美元,而牛肉的成本为14.88美元。研究小组表示,牛肉-大米具有营养和环境效益,而且食品安全风险低、易于制造,因此是商业化的理想选择。在此之前,科学家们计划通过改善大米中的条件来提高其营养价值,以帮助牛肉细胞茁壮成长。在此之后,最后的障碍可能只是说服人们愿意吃它--但公平地说,未来的许多食品都可以这样做。该研究的第一作者SohyeonPark说:"我们通常从牲畜身上获取所需的蛋白质,但牲畜生产需要消耗大量资源和水,并释放大量温室气体。我没想到细胞在水稻中生长得这么好。现在我看到了这种谷物杂交食品的无限可能。有朝一日,它可以作为饥荒救济粮、军粮,甚至太空食品。"这项研究发表在《物质》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1418155.htm手机版:https://m.cnbeta.com.tw/view/1418155.htm

封面图片

科学家发现制作良好植物性蛋白质的“终极方法”

科学家发现制作良好植物性蛋白质的“终极方法”人们普遍认为,减少肉类和奶酪的消费,转而食用植物食品是有益的。然而,当我们在超市的冷藏区面对传统的动物性食品和环保的替代蛋白质之间做出选择时,我们并不总是做出具有环保意识的选择。尽管现在很多植物性食品都有很好的风味,但往往缺乏"正确"的口感。此外,一些植物蛋白替代品在加工过程中会消耗资源,因此并不具有可持续性。但是,如果有可能制造出可持续的、富含蛋白质且口感适宜的食品呢?哥本哈根大学的最新研究为这一设想提供了动力。关键是什么?蓝绿藻。这种蓝绿藻并不是夏天在海中成为毒汤的那种臭名昭著的蓝绿藻,而是无毒的蓝绿藻。在玻璃管中培养微藻的封闭式光生物反应器。图片来源:IGV生物技术公司,CCBY-SA3.0DEED"蓝绿藻是一种活的生物体,我们已经能够让它们产生一种它们无法自然产生的蛋白质。尤其令人兴奋的是,这种蛋白质是以纤维状形成的,有点像肉类纤维。"食品科学系的PoulErikJensen教授说:"我们有可能将这些纤维用于植物性肉类、奶酪或其他一些我们追求特殊口感的新型食品中。"在一项新的研究中,詹森和哥本哈根大学等机构的研究人员表明,通过将外来基因插入蓝藻,蓝藻可以作为新蛋白质的宿主生物。在蓝藻体内,这种蛋白质以细线或纳米纤维的形式组织起来。最少的加工-最大的可持续性全世界的科学家都把蓝藻和其他微藻作为潜在的替代食品。部分原因是蓝藻和其他微藻与植物一样,通过光合作用生长,部分原因是它们本身含有大量蛋白质和有益健康的多不饱和脂肪酸。"能够操纵一个活的生物体生产出一种新型蛋白质,并将其自身组织成线,这种程度是很少见的,而且非常有前途。此外,由于蓝藻依靠水、大气中的二氧化碳和太阳光生存,因此它是一种很容易持续生长的生物。这项成果赋予蓝藻作为可持续原料的更大潜力,"专门从事植物性食品和植物生物化学研究的普尔-埃里克-延森(PoulErikJensen)热情洋溢地说道。世界各地的许多研究人员都在努力为植物性食品(如豌豆和大豆)开发富含蛋白质的质地增强剂。然而,这需要大量的加工过程,因为需要将种子磨碎并从中提取蛋白质,以获得足够高的蛋白质浓度。"如果我们能在食品中利用整个蓝藻,而不仅仅是蛋白质纤维,就能最大限度地减少所需的加工量。"詹森说:"在食品研究中,我们力求避免过多的加工,因为这不仅会影响食材的营养价值,还会消耗大量能源。"“明天的牛”教授强调说,从蓝藻开始生产蛋白质链还需要相当长的时间。首先,研究人员需要弄清楚如何优化蓝藻蛋白质纤维的生产。但詹森对此持乐观态度:"我们需要对这些生物进行改良,以生产更多的蛋白质纤维,同时'劫持'蓝藻为我们工作。这有点像我们劫持奶牛为我们生产大量牛奶。只不过在这里,我们避免了任何有关动物福利的伦理考虑。我们不会在明天就达到目标,因为我们必须学会解决生物体内的一些新陈代谢难题。但我们已经在这个过程中了,我相信我们一定能成功,如果是这样,这就是制造蛋白质的终极方法。"一些国家已经开始工业化种植螺旋藻等蓝藻,主要用于健康食品。生产通常在露天下的“赛道池塘”中进行,或在光生物反应器室中进行,生物在玻璃管中生长。詹森认为,丹麦是建立"微藻工厂"生产加工蓝藻的理想之地。丹麦拥有具备适当技能的生物技术公司和高效的农业部门。"丹麦农业原则上可以生产蓝藻和其他微藻,就像今天生产乳制品一样。可以每天收获或挤出一部分细胞作为新鲜的生物质。通过浓缩蓝藻细胞,你可以得到一种看起来像香蒜酱,但含有蛋白质链的东西。只需极少的加工,它就可以直接加入食品中。"编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1422274.htm手机版:https://m.cnbeta.com.tw/view/1422274.htm

封面图片

科学家发现可能引发地球生命的 "先锋肽"

科学家发现可能引发地球生命的"先锋肽"罗格斯大学的一个科学家小组致力于确定新陈代谢的原始起源--一套首先为地球上的生命提供动力的核心化学反应,现在他们已经确定了一种蛋白质的一部分,可以为科学家提供探测即将产生生命的行星的线索。罗格斯大学高级生物技术和医学中心(CABM)的研究员VikasNanda说,这项研究于3月10日发表在《科学进展》杂志上,对寻找地外生命具有重要意义,因为它为研究人员提供了一条新的线索。根据实验室研究,罗格斯大学的科学家们说,启动生命的最有可能的化学候选物之一是一种带有两个镍原子的简单肽,他们称之为"Nickelback",不是因为它与加拿大摇滚乐队有什么关系,而是因为它的骨架氮原子与两个关键的镍原子结合。肽是由被称为氨基酸的一些元素组成的蛋白质的一个成分。Nanda说:"科学家们相信,在35亿到38亿年前的某个时候,出现了一个转折点,一些东西启动了从生物前化学--生命之前的分子--到生命、生物系统的变化。我们相信这一变化是由一些小的前体蛋白引发的,它们在一个古老的代谢反应中执行关键步骤。而且我们认为我们已经找到了这些'先锋肽'中的一个。"镍背肽的计算机渲染图显示了连接两个关键镍原子(橙色)的骨架氮原子(蓝色)。确定了蛋白质的这一部分的科学家认为它可能为探测即将产生生命的行星提供线索。资料来源:Nanda实验室进行这项研究的科学家是罗格斯大学领导的一个名为"地球圈和微生物祖先的纳米机械进化"(ENIGMA)的团队的一部分,该团队是美国宇航局天体生物学项目的一部分。研究人员正在寻求了解蛋白质是如何演化成为地球上生命的主要催化剂的。当用望远镜和探测器在宇宙中寻找过去、现在或新兴生命的迹象时,美国宇航局的科学家们寻找特定的"生物特征",这些特征被认为是生命的预兆。研究人员推断,一种原始的煽动性化学物质需要足够简单,以便能够在前生物汤中自发地组装起来。但它必须具有足够的化学活性,以拥有从环境中获取能量来驱动生化过程的潜力。为此,研究人员采用了一种"还原主义"方法。他们首先研究了已知与代谢过程相关的现有当代蛋白质。由于知道这些蛋白质太过复杂,不可能在早期就出现,因此他们将其简化为基本结构。经过一连串的实验,研究人员得出结论,最好的候选者是Nickelback。该肽由13个氨基酸组成,并与两个镍离子结合。他们推断,镍是早期海洋中一种丰富的金属。当与肽结合时,镍原子成为强大的催化剂,吸引额外的质子和电子并产生氢气。研究人员推断,氢气在早期地球上也是比较丰富的,而且会是为新陈代谢提供能量的一个重要来源。Nanda说:"这很重要,因为虽然有许多关于生命起源的理论,但对这些想法的实际实验室测试却很少。这项工作表明,不仅简单的蛋白质代谢酶是可能的,而且它们是非常稳定和非常活跃的--使它们成为生命的一个合理的起点。"...PC版:https://www.cnbeta.com.tw/articles/soft/1348925.htm手机版:https://m.cnbeta.com.tw/view/1348925.htm

封面图片

科学家利用用过的咖啡渣将混凝土强度提高了 30%

科学家利用用过的咖啡渣将混凝土强度提高了30%人类每年生产约44亿吨混凝土。这一过程消耗了大约80亿吨沙子(每年使用40-500亿吨沙子),这在一定程度上导致了近年来建筑商品的严重短缺。与此同时,我们在同一时间段内产生了约100亿公斤用过的咖啡渣——澳大利亚皇家墨尔本理工大学的一组研究人员发现,咖啡渣可以在混凝土生产过程中用作二氧化硅的替代品,在混凝土生产过程中,适当的比例,产生比单独的沙子更强的化学键。该研究的主要作者、皇家墨尔本理工大学工程学院的RajeevRoychand博士在最近的一份报告中表示:“有机废物的处理对环境构成了挑战,因为它会排放大量的温室气体,包括甲烷和二氧化碳,从而导致气候变化。”释放。他指出,仅澳大利亚每年就生产7500万公斤用过的咖啡渣,其中大部分最终被填埋。投稿:@ZaiHuaBot频道:@TestFlightCN

封面图片

科学家发现大自然对抗珊瑚白化的秘密武器

科学家发现大自然对抗珊瑚白化的秘密武器由意大利技术研究所(IIT)和米兰比可卡大学(UniversitàdegliStudidiMilano-Bicocca)的科学家组成的研究小组与意大利热那亚水族馆(AcquariodiGenova)合作,开发了一种可生物降解的生物材料,用于输送这种分子,而不会对周围的海洋环境造成破坏。热那亚水族馆进行的测试表明,这种材料在防止珊瑚白化方面具有显著效果。在极端情况下,珊瑚白化会导致珊瑚生物死亡,给珊瑚礁带来毁灭性后果。这些珊瑚礁对全球经济、保护海岸线免受自然灾害以及保护海洋生物多样性至关重要。大多数珊瑚与微藻共生,微藻对珊瑚的生存和鲜艳的颜色至关重要。然而,气候变化造成的海水和海洋温度上升会破坏这种共生关系,导致珊瑚白化。在这种情况下,珊瑚会因失去藻类而变白,并面临饥饿的危险。近年来,由于气候变化,这种情况已经影响到世界上大多数主要的珊瑚大堡礁,包括澳大利亚的大堡礁。遗憾的是,目前还没有有效的方法来应对和预防珊瑚白化,以免严重危害这些栖息地及其相关的生物多样性。印度理工学院和米兰比可卡大学的研究人员与热那亚水族馆合作,展示了姜黄素在防止气候变化引起的珊瑚白化方面的功效。这种天然分子是通过一种基于玉米蛋白(一种从玉米中提取的蛋白质)的生物材料的可控过程输送到珊瑚体内的。该系统由研究人员自行开发,以确保环境安全。在热那亚水族馆进行的测试中,模拟了热带海洋过热的条件,将水温升高到33°C(91°F)。在这种情况下,所有未经处理的珊瑚都出现了白化现象,而姜黄素处理过的珊瑚则没有任何白化迹象。这一结果表明,该技术能有效降低珊瑚对热应力的脆弱性。这项研究使用的珊瑚物种是Stylophorapistillata,这是一种常见于热带印度洋的珊瑚,已被列入世界自然保护联盟(IUCN)濒危物种红色名录。这项研究的第一作者、意大利技术研究所智能材料小组研究员、米兰比可卡大学环境与地球科学系研究员马尔科-孔塔迪(MarcoContardi)说:"这项技术已经申请了专利,事实上,这项研究的下一步工作将重点关注其在自然界中的大规模应用。与此同时,我们还将研究使用其他天然抗氧化物质来阻止白化过程,从而防止珊瑚礁遭到破坏"。米兰比可卡大学海洋研究与高等教育中心(MaRHE)副主任、DISAT研究员西蒙-蒙塔诺(SimoneMontano)说:"使用可生物降解和生物兼容的新材料,能够释放出减少珊瑚白化的天然物质,这是一种全新的做法。我坚信,这种创新方法将是海洋生态系统恢复战略发展过程中的一个重大突破。"...PC版:https://www.cnbeta.com.tw/articles/soft/1371861.htm手机版:https://m.cnbeta.com.tw/view/1371861.htm

封面图片

科学家研究打造地球之外的人工碳循环

科学家研究打造地球之外的人工碳循环例如,宇航员每天需要近一公斤的氧气来维持生命。因此,每年必须运输数吨氧气才能在地外建立空间站,从而增加了任务的成本和风险。预计在地外站点建立人工碳循环可以改变这种状况。在地球上,碳循环使碳原子从大气层(以二氧化碳和甲烷等气态碳化合物的形式存在)转移到地球(以糖、淀粉等形式存在),最后返回大气层,完成循环。这种生物地球化学循环的能量输入由太阳能提供,植物或其他生物吸收太阳能,通过光合作用将CO2和H2O转化为碳基化合物和氧气。鉴于目前的目标地外地点(即月球和火星)拥有充足的太阳光照射,并显示出丰富的二氧化碳和水储备,因此可采用这种光合作用策略在地外地点建立人工碳循环系统,为太空任务提供充足的推进剂和生命支持。随着在地外星球发现丰富的二氧化碳和水储备,有人提出也可以在地外星球实施光催化二氧化碳转化,建立人工碳循环系统,为太空任务提供推进剂和生命支持。人工光合作用:可持续的解决方案在此背景下,通过光催化二氧化碳转化进行人工光合作用,有望实现可持续循环。具体来说,这种策略可以模仿绿色植物光合作用的作用,有望在地球上重建目前因二氧化碳排放过量而中断的自然界碳循环。这种人工光合作用战略如果作为ISRU的一部分在地外站点成功实施,也可以在地外站点建立人工碳循环。迄今为止,通过光催化二氧化碳转化已成功生产出多种产品,如CO、CH4、CH3OH和HCHO。然而,光催化CO2的转化效率仍不能满足实际应用的需要。因此,开发具有优异光转化效率和产品选择性的光催化二氧化碳转化技术,不仅在地球上,而且在地外也有很大的应用前景。地外光催化的研究前景最近,中国科学技术大学熊玉杰教授领导的研究团队撰写了一篇关于地外光催化二氧化碳转化的评论,为光催化二氧化碳转化的发展及其在地球以外的应用提供了简明清晰的指导。他们首先概述了光催化二氧化碳转化的基本和一般原理。然后,他们总结了光催化技术在地外实施过程中可能遇到的问题。最后,对这一领域的发展进行了展望。相关成果发表在《中国催化学报》上。...PC版:https://www.cnbeta.com.tw/articles/soft/1382765.htm手机版:https://m.cnbeta.com.tw/view/1382765.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人