科学家发现制作良好植物性蛋白质的“终极方法”

科学家发现制作良好植物性蛋白质的“终极方法”人们普遍认为,减少肉类和奶酪的消费,转而食用植物食品是有益的。然而,当我们在超市的冷藏区面对传统的动物性食品和环保的替代蛋白质之间做出选择时,我们并不总是做出具有环保意识的选择。尽管现在很多植物性食品都有很好的风味,但往往缺乏"正确"的口感。此外,一些植物蛋白替代品在加工过程中会消耗资源,因此并不具有可持续性。但是,如果有可能制造出可持续的、富含蛋白质且口感适宜的食品呢?哥本哈根大学的最新研究为这一设想提供了动力。关键是什么?蓝绿藻。这种蓝绿藻并不是夏天在海中成为毒汤的那种臭名昭著的蓝绿藻,而是无毒的蓝绿藻。在玻璃管中培养微藻的封闭式光生物反应器。图片来源:IGV生物技术公司,CCBY-SA3.0DEED"蓝绿藻是一种活的生物体,我们已经能够让它们产生一种它们无法自然产生的蛋白质。尤其令人兴奋的是,这种蛋白质是以纤维状形成的,有点像肉类纤维。"食品科学系的PoulErikJensen教授说:"我们有可能将这些纤维用于植物性肉类、奶酪或其他一些我们追求特殊口感的新型食品中。"在一项新的研究中,詹森和哥本哈根大学等机构的研究人员表明,通过将外来基因插入蓝藻,蓝藻可以作为新蛋白质的宿主生物。在蓝藻体内,这种蛋白质以细线或纳米纤维的形式组织起来。最少的加工-最大的可持续性全世界的科学家都把蓝藻和其他微藻作为潜在的替代食品。部分原因是蓝藻和其他微藻与植物一样,通过光合作用生长,部分原因是它们本身含有大量蛋白质和有益健康的多不饱和脂肪酸。"能够操纵一个活的生物体生产出一种新型蛋白质,并将其自身组织成线,这种程度是很少见的,而且非常有前途。此外,由于蓝藻依靠水、大气中的二氧化碳和太阳光生存,因此它是一种很容易持续生长的生物。这项成果赋予蓝藻作为可持续原料的更大潜力,"专门从事植物性食品和植物生物化学研究的普尔-埃里克-延森(PoulErikJensen)热情洋溢地说道。世界各地的许多研究人员都在努力为植物性食品(如豌豆和大豆)开发富含蛋白质的质地增强剂。然而,这需要大量的加工过程,因为需要将种子磨碎并从中提取蛋白质,以获得足够高的蛋白质浓度。"如果我们能在食品中利用整个蓝藻,而不仅仅是蛋白质纤维,就能最大限度地减少所需的加工量。"詹森说:"在食品研究中,我们力求避免过多的加工,因为这不仅会影响食材的营养价值,还会消耗大量能源。"“明天的牛”教授强调说,从蓝藻开始生产蛋白质链还需要相当长的时间。首先,研究人员需要弄清楚如何优化蓝藻蛋白质纤维的生产。但詹森对此持乐观态度:"我们需要对这些生物进行改良,以生产更多的蛋白质纤维,同时'劫持'蓝藻为我们工作。这有点像我们劫持奶牛为我们生产大量牛奶。只不过在这里,我们避免了任何有关动物福利的伦理考虑。我们不会在明天就达到目标,因为我们必须学会解决生物体内的一些新陈代谢难题。但我们已经在这个过程中了,我相信我们一定能成功,如果是这样,这就是制造蛋白质的终极方法。"一些国家已经开始工业化种植螺旋藻等蓝藻,主要用于健康食品。生产通常在露天下的“赛道池塘”中进行,或在光生物反应器室中进行,生物在玻璃管中生长。詹森认为,丹麦是建立"微藻工厂"生产加工蓝藻的理想之地。丹麦拥有具备适当技能的生物技术公司和高效的农业部门。"丹麦农业原则上可以生产蓝藻和其他微藻,就像今天生产乳制品一样。可以每天收获或挤出一部分细胞作为新鲜的生物质。通过浓缩蓝藻细胞,你可以得到一种看起来像香蒜酱,但含有蛋白质链的东西。只需极少的加工,它就可以直接加入食品中。"编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1422274.htm手机版:https://m.cnbeta.com.tw/view/1422274.htm

相关推荐

封面图片

科学家用新的无细胞蛋白质结晶方法推进结构生物学的发展

科学家用新的无细胞蛋白质结晶方法推进结构生物学的发展东京理工大学开发了一种新的无细胞蛋白质结晶(CFPC)方法,包括直接的蛋白质结晶,是结构生物学领域的一个重大进步。这项技术将使我们能够分析用传统方法无法研究的不稳定的蛋白质。分析这些将增加我们对细胞过程和功能的了解。PC版:https://www.cnbeta.com/articles/soft/1323455.htm手机版:https://m.cnbeta.com/view/1323455.htm

封面图片

科学家用尖端人工智能揭开蛋白质的秘密

科学家用尖端人工智能揭开蛋白质的秘密该工具由KAUST生物信息学研究员MaxatKulmanov及其同事开发,在预测蛋白质功能方面优于现有的分析方法,甚至能够分析现有数据集中没有明确匹配的蛋白质。该模型被称为DeepGO-SE,它利用了类似于Chat-GPT等生成式人工智能工具所使用的大型语言模型。然后,它根据蛋白质工作方式的一般生物学原理,利用逻辑蕴含得出关于分子功能的有意义的结论。从本质上讲,它通过构建部分世界模型(在本例中为蛋白质功能),并根据常识和推理推断出在这些世界模型中应该发生的事情,从而赋予计算机逻辑处理结果的能力。一种新的人工智能(AI)工具能对未知蛋白质的功能进行逻辑推理,有望帮助科学家揭开细胞内部的奥秘。图片来源:©2024KAUST;IvanGromicho他补充说:"这种方法有很多应用前景,"KAUST生物本体论研究小组负责人罗伯特-霍恩多夫(RobertHoehndorf)说,"特别是当需要对神经网络或其他机器学习模型生成的数据和假设进行推理时。"库尔曼诺夫和霍恩多夫与KAUST的斯特凡-阿罗德(StefanArold)以及瑞士生物信息学研究所的研究人员合作,评估了该模型破译那些在体内作用未知的蛋白质功能的能力。该工具成功地利用了一种鲜为人知的蛋白质的氨基酸序列数据及其与其他蛋白质的已知相互作用,并精确地预测了其分子功能。该模型非常精确,在一次国际功能预测工具竞赛中,DeepGO-SE在1600多种算法中名列前20位。KAUST团队目前正在利用这一工具研究在沙特阿拉伯沙漠极端环境中生长的植物中发现的神秘蛋白质的功能。他们希望这些发现将有助于确定生物技术应用中的新型蛋白质,并希望其他研究人员也能使用这一工具。库尔曼诺夫解释说:"DeepGO-SE分析未表征蛋白质的能力可以促进药物发现、代谢通路分析、疾病关联、蛋白质工程、筛选感兴趣的特定蛋白质等任务。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1418103.htm手机版:https://m.cnbeta.com.tw/view/1418103.htm

封面图片

科学家们正在制造实验室培养的脂肪 以混入植物性肉类中

科学家们正在制造实验室培养的脂肪以混入植物性肉类中根据《大西洋》杂志刊登的一篇新文章,在植物性培根(通常被称为假培根,因为它实际上不是由肉制成的)中加入实验室培植的脂肪,是目前正在向无肉食品转变的行业的一个救星。根据文章的作者YasminTayag的说法,这种培根和真正的东西一样好。植物性培根不仅像你所期望的那样脆,而且还有一种"令人满意的嚼劲",这种嚼劲是由实验室培育的脂肪编织而成的。Tayag尝试的培根条是由生物技术初创公司MissionBarns创造的,该公司在生物反应器中培育的猪肉脂肪后创造了植物基培根。培根以其松脆而有嚼劲的质地而闻名,这是许多植物性选择所不能提供的。事实证明,动物脂肪是许多行业的关键项目,包括它如何帮助烹饪食物。基于植物的选择虽然有用,但并不总是能提供与基于肉类的替代品一样的保真度。这就是为什么能够生产实验室培植的脂肪可以从字面上永远改变市场的这一部分。当然,将实验室生产的脂肪滴入植物性肉类并不能解决围绕这部分行业的所有问题。事实上,它并没有解决这些植物性食品所提供的营养价值不足的问题。例如,真正的肉类含有丰富的蛋白质,而植物性食品则缺少大量所需的蛋白质。还有一个事实是,实验室培育的脂肪并不便宜。因此,将其放入每一种植物性肉类中是不可行的,特别是如果你想降低价格。但是,随着该行业慢慢寻找在实验室中制造肉类的方法,甚至包括制造3D打印的牛排,有实验室培育的脂肪来帮助这个过程,至少可以让创新者思考新的方法来推动植物性肉类的发展。不幸的是,我们真正能做的是等待和观察这种发展的方向,以及它是否被证明是值得的。...PC版:https://www.cnbeta.com.tw/articles/soft/1347053.htm手机版:https://m.cnbeta.com.tw/view/1347053.htm

封面图片

科学家揭示蛋白质如何驱动癌症生长

科学家揭示蛋白质如何驱动癌症生长在圣路易斯华盛顿大学医学院、麻省理工学院和哈佛大学布罗德研究所、杨百翰大学以及世界各地其他机构的领导下,临床蛋白质组肿瘤分析联合会对驱动癌症的关键蛋白质及其调控方式进行了研究。研究结果于8月14日发表在《细胞》(Cell)和《癌细胞》(CancerCell)杂志上的一组论文中。临床肿瘤蛋白质组学分析联合会由美国国立卫生研究院(NIH)国家癌症研究所资助。资深作者、华盛顿大学戴维-英格利希-史密斯医学特聘教授丁力博士说:"在我们开发更好的癌症疗法的努力中,这种对驱动肿瘤生长的蛋白质的新分析是继癌症基因组测序之后的下一步。通过过去的癌细胞基因组测序工作,我们确定了近300个驱动癌症的基因。现在,我们正在研究这些癌基因所启动的机器的细节--实际导致细胞分裂失控的蛋白质及其调控网络。我们希望这项分析能成为癌症研究人员开发多种肿瘤类型新疗法的重要资源。"研究人员分析了涉及10种不同类型癌症的约1万个蛋白质,他们强调了大量数据在这类分析中的重要性;其中许多重要的癌症驱动蛋白在任何一种癌症中都很罕见,如果对肿瘤类型进行单独研究,就不可能发现这些蛋白。这项分析包括两种不同类型的肺癌以及结直肠癌、卵巢癌、肾癌、头颈癌、子宫癌、胰腺癌、乳腺癌和脑癌。丁力也是巴恩斯犹太医院和华盛顿大学医学院西特曼癌症中心的研究成员。他介绍谁哦"当我们对多种癌症类型进行综合分析时,我们就能提高检测导致癌症生长和扩散的重要蛋白质的能力。综合分析还能让我们找出驱动不同类型癌症的主要共同机制。"除了单个蛋白质的功能外,这些数据还能让研究人员了解蛋白质之间是如何相互作用来促进癌症生长的。如果两种蛋白质的水平相互关联--例如,当其中一种蛋白质的水平较高时,另一种蛋白质的水平也总是较高--这就表明这两种蛋白质是作为伙伴作用的。破坏这种相互作用可能是阻止肿瘤生长的一种有效方法。这些研究(包括丁和布罗德研究所的加德-格茨博士共同领导的一项研究)还揭示了通过化学改变蛋白质以改变其功能的不同方法。研究人员记录了这种化学变化--称为乙酰化和磷酸化的过程--如何改变DNA修复、改变免疫反应、改变DNA的折叠和包装方式,以及其他可能在癌症发生过程中发挥作用的重要分子变化。这项研究还揭示了免疫疗法的有效性。检查点抑制剂等免疫疗法通常对突变较多的癌症最有效,但即便如此,它们也并非对所有患者都有效。研究人员发现,大量突变并不总是导致异常蛋白质的大量存在,而异常蛋白质正是免疫系统攻击肿瘤的目标。丁说:"对某些癌症来说,即使突变有可能产生肿瘤抗原,但如果没有异常蛋白表达或表达很少,这种突变就可能不是治疗的靶点。这可以解释为什么有些病人对免疫疗法没有反应,即使他们似乎应该对免疫疗法有反应。因此,我们的蛋白质组学调查涵盖了肿瘤抗原的表达谱,对于设计针对选定突变的新免疫疗法特别有用。"在另一项研究中,丁的团队确定了DNA甲基化模式,这是另一种能影响基因表达方式的化学变化。这种模式可能是癌症的关键驱动因素。在一项重要发现中,研究小组确定了在某些肿瘤类型中抑制免疫系统的分子开关。这组四项研究的最后一篇论文向更广泛的研究界提供了联盟使用的数据和分析资源。她说:"总的来说,这种对多种癌症类型进行的彻底蛋白质组学和化学修饰分析--与我们长期积累的癌症基因组学知识相结合--提供了另一层信息,我们希望这些信息能帮助解答癌症是如何生长并设法躲避我们的许多最佳治疗方法的许多持续存在的问题。"...PC版:https://www.cnbeta.com.tw/articles/soft/1377313.htm手机版:https://m.cnbeta.com.tw/view/1377313.htm

封面图片

科学家揭开关键癌症蛋白质的秘密结构

科学家揭开关键癌症蛋白质的秘密结构俄亥俄州立大学的科学家们利用先进的研究技术检测了一种因危险突变而与人类癌症关系密切的蛋白质的隐藏区域,从而为该蛋白质的研究注入了新的活力。这项研究确定了受有害基因改变影响的区域。Ras蛋白家族是启动多种细胞生长、分裂和分化的酶,其基因已被确定为人类最常发生突变的癌症相关基因。这项研究的对象K-Ras蛋白与75%的Ras相关癌症有关。研究人员首次发现了这种蛋白质结构的一部分,而这部分结构以前是标准实验室工具无法观察到的,研究人员揭示了与这种蛋白质突变有关的特征和相互作用,这种突变使细胞处于永久分裂状态--这是一种典型的癌症特征。研究的资深作者、俄亥俄研究学者、俄亥俄州立大学化学与生物化学教授拉斐尔-布吕施韦勒(RafaelBrüschweiler)说:"我们知道这些突变是一个重大问题:它们会导致死亡。我们知道,结构生物学能为了解这些突变的机制提供独特的见解,并能促进寻找潜在的治疗方法。""我们现在对这种蛋白质的作用有了更全面的了解,这意味着我们可以开始考虑如何在它变异后中和它。从这个意义上说,信息就是力量,现在这些信息已经公开,我们和其他研究人员可以利用这些信息开始假设。"这项研究最近发表在《自然-结构与分子生物学》(NatureStructural&MolecularBiology)杂志上。研究方法和结果尽管已有关于K-Ras及其与细胞健康相关分子的关键功能关系的知识,但这种蛋白质一直被认为是"不可药用的",因为它的构型-无论是正常形式还是突变形式都隐藏了其结构中最有希望成为治疗靶点的位点。设计这类药物时需要精确,因为以错误的方式干扰蛋白质可能比突变导致的疾病造成更大的伤害。"K-Ras是癌症研究的圣杯--可能是全世界研究最多的生物分子之一,因为它在许多癌症中发挥着关键作用,"Brüschweiler说。"但这也是一个巨大的挑战。"2019年,Brüschweiler及其同事报告了一种技术,这种技术能够观察到移动速度太慢、标准核磁共振(NMR)光谱无法检测到的蛋白质。一年后,研究小组决定开始将这些发现应用于寻找K-Ras的秘密藏身之处。标准核磁共振可以跟踪快速作用的蛋白质,但在较长的运动和相互作用时间尺度上会遇到困难,而用于确定蛋白质结构的X射线晶体学在运动较少和时间较长的情况下效果更好。Brüschweiler及其同事考虑到了K-Ras的动态特性及其与活性配体(GTP)的相互作用,首先检测到了来自隐藏区域的微弱信号,然后优化核磁共振实验以加强这些信号。这项研究揭示了K-Ras结构中的两个"开关"区域--有趣的是,这两个区域都位于发生最危险突变的蛋白质环附近,这在以前是不可见的。研究小组还确定了蛋白质"骨架"的复杂结构动力学行为,它放大了开关附近的其他特征。Brüschweiler说,骨架对了解蛋白质的结构特性至关重要--从骨架出发,鉴定氨基酸侧链"相对简单"。这些实验还进一步明确了正常蛋白质与其变异形式的区别:在正常情况下,K-Ras与两个伙伴分子中的第一个分子结合时活性更高,并能保持对多种细胞功能的适当控制,包括恢复到非活性状态。如果发生突变,K-Ras就会停留在活跃期,永远不会休息。"我们需要活跃的细胞,但在某些时候,它们必须停下来。否则,就像在汽车上永远不要把脚从油门上移开--在某些时候,你需要把脚从油门上移开,因为车速太快了,"他说。"这就是基本问题所在,这些突变会诱导细胞不停地活动。"有了突变相关开关区域的特征,研究人员就有了新的药物靶点,可以在不妨碍K-Ras基本细胞功能的情况下抑制突变。Brüschweiler说:"开关和开关相互作用的相关区域是新的候选目标,我们现在可以对它们进行前所未有的详细监测。这可能不会在一夜之间改变世界,但这是有可能影响人类健康的基本新知识。"Brüschweiler对下一步工作有自己的想法,比如描述现有药物如何与蛋白质相互作用。他的团队和其他人未来的工作将得到一台磁场为1.2千兆赫的新型NMR仪器的支持,这将是美国最强大的NMR仪器,该仪器刚刚运抵俄亥俄州立大学,Brüschweiler是俄亥俄州立大学国家网关超高场NMR中心的首席研究员。该中心于2019年获得了美国国家科学基金会1760万美元的资助,该基金会也为这项新研究提供了支持。...PC版:https://www.cnbeta.com.tw/articles/soft/1395097.htm手机版:https://m.cnbeta.com.tw/view/1395097.htm

封面图片

揭开细胞动力源的秘密:科学家们揭开了线粒体的蛋白质图谱

揭开细胞动力源的秘密:科学家们揭开了线粒体的蛋白质图谱线粒体是细胞的"动力室",在生物体的能量生产中发挥着关键作用,并参与各种代谢和信号过程。来自波恩大学医院和弗莱堡大学的研究人员现在已经对线粒体内的蛋白质组织有了系统的了解。线粒体的蛋白质图谱为进一步探索这些细胞动力源的功能奠定了重要基础,并对疾病的理解产生了影响。这项新研究最近发表在著名的《自然》杂志上。线粒体是细胞的重要组成部分,被一层双膜所包围,将它们与细胞的其他部分分开。它们产生维持这些活动所需的大部分能量。除了能量生产,线粒体在新陈代谢和信号传递中发挥着关键作用,作为炎症过程和程序性细胞死亡的表面。从线粒体进入门移除被捕蛋白质的质量控制机制的模型。资料来源:Schulte等人,2023年《自然》杂志线粒体的缺陷导致了许多疾病,尤其是神经系统的疾病。因此,对线粒体过程的分子理解对基础医学研究具有最重要的意义。细胞中的分子工作者通常是蛋白质。线粒体可以包含大约1000个或更多不同的蛋白质。为了执行功能,这些分子中的几个经常一起工作,形成一个蛋白质机器,也称为蛋白质复合物。蛋白质还在分子过程的执行和调节中相互作用。然而,人们对线粒体蛋白质在这种复合体中的组织结构知之甚少。英国广播公司的托马斯-贝克尔教授和法比安-登-布拉夫博士的研究小组与弗莱堡大学的贝恩德-法克勒教授、乌韦-舒尔特博士和尼古拉斯-普凡纳教授的研究小组一起,创建了一个蛋白质复合物中蛋白质组织的高分辨率图像,称为MitCOM。这涉及一种被称为复合体分析的特殊方法,以前所未有的分辨率记录单个蛋白质的指纹。MitCOM揭示了来自面包酵母的90%以上的线粒体蛋白在蛋白质复合物中的组织。这使得新的蛋白质-蛋白质相互作用和蛋白质复合体的鉴定成为可能--这对进一步的研究非常重要。UKB的研究人员与合作研究中心1218"线粒体对细胞功能的调节"项目合作,展示了这一数据集如何被用来阐明新的过程。线粒体从细胞的液体部分(称为细胞膜)输入99%的蛋白质。在这个过程中,一种被称为TOM复合体的机制使这些蛋白质通过膜被吸收到线粒体中。然而,当蛋白质在运输过程中被卡住时,它们是如何从TOM复合体中移除的,这一点在很大程度上还不清楚。为了阐明这一点,Becker教授和denBrave博士领导的团队使用了MitCOM数据集的信息。结果表明,非输入的蛋白质被专门标记为细胞降解。博士生ArushiGupta的研究进一步揭示了这些被标记的蛋白质随后被定向降解的途径。了解这些过程很重要,因为蛋白质输入的缺陷可能导致细胞损伤和神经系统疾病。"我们研究中的例子证明了MitCOM数据集在阐明新机制和途径方面的巨大潜力。因此,这个蛋白质地图代表了进一步研究的重要信息来源,它将帮助我们了解细胞动力源的功能和起源,"UKB生物化学和分子生物学研究所所长贝克尔教授说。...PC版:https://www.cnbeta.com.tw/articles/soft/1348957.htm手机版:https://m.cnbeta.com.tw/view/1348957.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人