科学家揭示了创伤是如何改变大脑的

科学家揭示了创伤是如何改变大脑的罗切斯特大学德尔蒙特神经科学研究所的ZVR实验室由助理教授本杰明-苏亚雷斯-吉梅内斯博士领导,致力于了解这些变化背后的机制,以及大脑如何学习其环境,预测潜在威胁,并识别安全。"我们正在学习更多关于暴露于创伤的人如何学习区分什么是安全的和什么是不安全的。他们的大脑让我们了解到在受创伤暴露影响的特定机制中可能出现的问题,特别是当涉及到情感时,"苏亚雷斯-吉梅内斯说,他作为哥伦比亚大学欧文医学中心教授尤瓦尔-内里亚博士实验室的博士后研究员开始这项工作。他们的研究最近发表在《通信生物学》(CommunicationsBiology)上,确定了暴露于创伤的人(有或没有精神病症,包括创伤后应激障碍、抑郁症和焦虑症)的显著性网络的变化涉及大脑中用于学习和生存的机制。使用fMRI,研究人员记录了参与者的大脑活动,因为他们看着不同大小的圆圈--只有一种大小与小冲击(或威胁)有关。伴随着显著性网络的变化,研究人员发现了另一个差异--这个差异是在暴露于创伤的复原力组中。他们发现接触过创伤而没有精神病态的人的大脑正在通过参与执行控制网络--大脑的主导网络之一--来补偿其大脑过程的变化。哥伦比亚大学临床神经生物学助理教授苏亚雷斯-吉梅内斯(Suarez-Jimenez)是本文的共同第一作者,他与ZhuXi博士一起说:"知道当某人受到创伤时在大脑中寻找什么,可以大大推进治疗。在这种情况下,我们知道大脑中哪里发生了变化,以及一些人如何围绕这种变化开展工作。它是复原力的一个标志"。加入情感元素威胁的可能性可以改变暴露在创伤中的人的反应--研究人员发现创伤后应激障碍(PTSD)患者的情况就是如此,正如《抑郁与焦虑》杂志最近的一项研究所述。苏亚雷斯-吉梅内斯、他的其他合著者和资深作者尼利亚发现,当不涉及情绪时,创伤后应激障碍患者可以完成与没有接触过创伤的人相同的任务。然而,当由威胁引起的情绪被添加到类似的任务中时,那些患有创伤后应激障碍的人更难区分其中的差异。研究小组使用了与其他实验相同的方法--不同的圆圈大小,其中一个大小与冲击形式的威胁有关。使用fMRI,研究人员观察到患有PTSD的人在海马体--大脑中负责情感和记忆的区域--和显著性网络--一种用于学习和生存的机制之间的信号传递较少。他们还检测到杏仁核(另一个与情绪有关的区域)和默认模式网络(当某人不关注外部世界时激活的大脑区域)之间的信号传递较少。这些发现反映了创伤后应激障碍患者无法有效区分圆圈之间的差异。"这告诉我们,创伤后应激障碍患者只有在有情绪成分的情况下才会有分辨的问题。在这种情况下,是厌恶;我们仍然需要确认对其他情绪如悲伤、厌恶、快乐等是否如此,"苏亚雷斯·吉梅内斯说。"因此,可能是在现实世界中,情绪使他们的认知能力超载,无法区分安全、危险或奖励。它对危险的概括性过强。""综合来看,这来自一项由NIMH资助的研究带来的两篇论文的发现,旨在揭示创伤、创伤后应激障碍和复原力的神经和行为机制,有助于扩展我们关于创伤对大脑影响的知识,"这项研究的首席PI尼利亚说。"创伤后应激障碍是由对恐惧处理和反应至关重要的大脑区域的显著功能障碍驱动的。我在哥伦比亚大学的实验室和罗切斯特的吉梅内斯博士实验室致力于推进神经生物学研究,这将有助于开发新的和更好的治疗方法,能够有效地针对异常的恐惧回路。"苏亚雷斯-吉梅内斯将继续探索大脑机制和与之相关的不同情绪,在他的实验室中借助虚拟现实技术,使用更多的真实情况。他想了解这些机制和变化是否是特定于威胁的,以及它们是否扩展到与环境相关的过程。...PC版:https://www.cnbeta.com.tw/articles/soft/1339411.htm手机版:https://m.cnbeta.com.tw/view/1339411.htm

相关推荐

封面图片

大脑的 "冷静药" - 科学家发现抑制焦虑的基因

大脑的"冷静药"-科学家发现抑制焦虑的基因一个国际科学家团队已经确定了大脑中驱动焦虑症状的一个基因。重要的是,对该基因的修改被证明可以降低焦虑水平,为焦虑症提供了一个令人兴奋的新的药物目标。这一发现由布里斯托尔大学和埃克塞特大学的研究人员领导,于4月25日发表在《自然通讯》杂志上。焦虑症很常见,每4个人中就有1人被诊断为焦虑症,在他们的一生中至少有一次焦虑症。严重的心理创伤会引发大脑杏仁核中神经元的遗传、生化和形态变化--杏仁核是牵涉到压力引起的焦虑的脑区,导致焦虑症的发作,包括恐慌症和创伤后应激障碍。然而,目前可用的抗焦虑药物的疗效很低,超过一半的患者在治疗后没有获得缓解。在开发强效抗焦虑药物方面取得的成功有限,这是由于我们对焦虑的神经回路和导致与压力有关的神经精神状态的分子事件了解不足。在这项研究中,科学家们试图确定大脑中支撑焦虑的分子事件。他们专注于一组分子,在动物模型中被称为miRNAs。这组重要的分子在人脑中也有发现,它能调节控制杏仁核中细胞过程的多种目标蛋白。在急性应激之后,该团队发现一种叫做miR483-5p的分子在小鼠杏仁核中的数量增加。重要的是,研究小组表明,增加的miR483-5p抑制了另一个基因Pgap2的表达,Pgap2反过来驱动了大脑中神经元形态的变化和与焦虑有关的行为。研究人员共同表明,miR-483-5p作为一个分子制动器,抵消了压力诱导的杏仁核变化,促进焦虑的缓解。发现一个新的杏仁核miR483-5p/Pgap2途径,大脑通过该途径调节对压力的反应,是发现新的、更有力的、急需的焦虑症治疗方法的第一块垫脚石,将加强这一途径。该研究的主要作者之一、布里斯托尔大学生理学、药理学和神经科学学院的MRC研究员和神经科学讲师ValentinaMosienko博士说:"压力可以触发一些神经精神疾病的发作,其根源在于遗传和环境因素的不利组合。虽然低水平的压力被大脑的自然调整能力所抵消,但严重或长期的创伤经历可以克服应激反应的保护机制,导致抑郁症或焦虑症等病症的发展。""miRNAs在战略上准备好控制复杂的神经精神疾病,如焦虑症。但是它们用来调节应激反应和易感性的分子和细胞机制直到现在还基本上是未知的。我们在这项研究中发现的miR483-5p/Pgap2途径,其激活发挥了减少焦虑的作用,为开发针对人类复杂精神疾病的抗焦虑疗法提供了巨大潜力。"...PC版:https://www.cnbeta.com.tw/articles/soft/1357589.htm手机版:https://m.cnbeta.com.tw/view/1357589.htm

封面图片

科学家揭示灵长类动物大脑之间的差异 - 人类、猿类和猴类

科学家揭示灵长类动物大脑之间的差异-人类、猿类和猴类了解使人类大脑与众不同的分子差异可以帮助科学家研究其发展中的中断。一项新的研究调查了人类和非人类灵长类动物如黑猩猩、恒河猴和狨猴之间前额叶皮层细胞的差异和相似之处--前额叶皮层是大脑的最前端区域,这个区域在高级认知功能中起着核心作用。该研究最近发表在《科学》杂志上,由包括威斯康星大学麦迪逊分校神经科学教授AndreSousa在内的一个研究小组进行。这些物种之间的细胞差异可能阐明了它们的进化步骤,以及这些差异如何与人类所见的自闭症和智力障碍等疾病有关。在华盛顿大学麦迪逊分校韦斯曼中心研究大脑发育生物学的索萨决定与他作为博士后研究员工作的耶鲁大学实验室合作,从研究和分类前额叶皮质的细胞开始。研究人员分析了来自四种密切相关的灵长类动物的前额皮层细胞(每个大脑中的阴影区域)的遗传物质,以描述细胞类型和遗传学方面的微妙差异。图像来源:威斯康星大学麦迪逊分校"我们正在对背外侧前额叶皮层进行分析,因为它特别有趣。这个皮层区域只存在于灵长类动物中。它不存在于其他物种中,"Sousa说。"它与高度认知方面的几个相关功能有关,如工作记忆。它也被牵涉到一些神经精神疾病中。因此,我们决定做这项研究,以了解人类在这个大脑区域的独特之处。"Sousa和他的实验室从人类、黑猩猩、猕猴和狨猴的组织样本中收集了60多万个前额皮质细胞的遗传信息。他们分析了这些数据,将细胞分为不同的类型,并确定不同物种间类似细胞的差异。不出所料,绝大部分的细胞是相当类似的,因为这些物种在进化上相对接近。安德烈-索萨索萨和他的合作者在前额叶皮层中发现了五种在所有四个物种中都不存在的细胞类型。他们还发现某些细胞类型的丰度存在差异,以及不同物种间类似细胞群的多样性。当比较黑猩猩和人类时,差异似乎很大--从他们的身体外观到他们的大脑能力。但是在细胞和基因水平上,至少在前额叶皮层中,相似之处很多,而不同之处则很少。"我们的实验室真的想知道人类的大脑有什么独特之处。显然,从这项研究和我们以前的工作来看,它的大部分实际上是相同的,至少在灵长类动物中是如此,"Sousa说。研究人员发现的细微差异可能是确定其中一些独特因素的开始,而这些信息可能导致在分子水平上对发育和发育障碍的启示。"我们想知道在人类和其他灵长类动物之间的进化分裂之后发生了什么,"Sousa说。"这个想法是在一个基因或几个基因中发生了突变,这些基因现在的功能略有不同。但是,如果这些基因与大脑发育有关,例如,某种细胞产生的数量,或细胞与其他细胞的连接方式,它是如何影响神经元回路和它们的生理特性?我们想了解这些差异如何导致大脑中的差异,然后导致我们可以在成年人身上观察到的差异"。该研究的观察是在成年人的大脑中进行的,在大部分发育完成之后。这意味着,这些差异可能是在大脑发育过程中发生的。因此,研究人员的下一步是研究发育中的大脑样本,并将他们的调查范围扩大到前额叶皮层之外,以便有可能找到这些差异的起源地和时间。希望这些信息将导致一个更强大的基础,在此基础上进行发育障碍研究。...PC版:https://www.cnbeta.com.tw/articles/soft/1332685.htm手机版:https://m.cnbeta.com.tw/view/1332685.htm

封面图片

哈佛大学的科学家们揭示了乌贼和章鱼如何发展出它们聪明的大脑袋

哈佛大学的科学家们揭示了乌贼和章鱼如何发展出它们聪明的大脑袋这不是什么秘密,是什么让它成为可能。头足类动物,包括章鱼、乌贼和墨鱼拥有所有无脊椎动物中最复杂的大脑。然而,它们如何开发这些大型大脑的过程一直是个谜。哈佛大学一个研究这些生物的视觉系统的实验室认为,他们在理解这一过程方面取得了重大进展,因为这些生物的大部分中央处理组织都集中在视觉系统。他们说,这个过程看起来令人惊讶地熟悉。来自FAS系统生物学中心的研究人员描述了他们如何使用一种新的活体成像技术,几乎实时地观察神经元在胚胎中的形成。然后他们能够通过视网膜的神经系统的发展来追踪这些细胞。他们看到的情况让他们感到惊讶。这是本文中产生的实时成像数据的一个例子。眼睛中的细胞膜被标记为荧光染料,使我们能够看到发育过程中的单个细胞行为。资料来源:KristenKoenig他们追踪的神经干细胞的行为与脊椎动物在神经系统发育过程中这些细胞的行为方式极为相似。这表明,尽管脊椎动物和头足类动物在5亿年前就相互分化,但它们不仅在使用类似的机制来制造它们的大大脑,而且这一过程以及细胞的行为、分裂和形状的方式可能基本上布局了开发这种神经系统所需的蓝图。"我们的结论令人惊讶,因为我们对脊椎动物神经系统发育的许多了解长期以来一直被认为是该系的特殊情况,"约翰-哈佛大学杰出研究员和该研究的高级作者克里斯汀-科尼格说。"通过观察这个过程非常相似的事实,它向我们建议的是,这两个独立进化的非常大的神经系统正在使用相同的机制来构建它们。这表明的是,动物在发育过程中使用的那些机制--那些工具--可能对构建大的神经系统很重要。"来自科尼格实验室的科学家们集中研究了一种叫做Doryteuthispealeii的乌贼的视网膜,更简单地说就是一种长鳍乌贼。这种鱿鱼长到大约一英尺长,在西北大西洋中非常多。作为胚胎,它们看起来相当可爱,有着圆圆的大脑袋和大眼睛。研究人员使用了与研究模式生物(如果蝇和斑马鱼)所流行的类似技术。他们创造了特殊的工具,并使用尖端的显微镜,可以每十分钟拍摄一次高分辨率的图像,连续拍摄数小时,以观察单个细胞的行为。研究人员使用荧光染料来标记细胞,以便他们能够绘制和跟踪它们。这种活体成像技术使研究小组能够观察被称为神经祖细胞的干细胞以及它们是如何组织的。这些细胞形成了一种特殊的结构,称为假上皮细胞。它的主要特征是细胞被拉长,所以它们可以密集地排列。研究人员还看到这些结构的细胞核在分裂前后都会上下移动。他们说,这种运动对于保持组织的有序性和生长的持续很重要。这种类型的结构在脊椎动物物种如何发展其大脑和眼睛方面是普遍的。在历史上,它被认为是脊椎动物的神经系统能够增长得如此巨大和复杂的原因之一。科学家们已经在其他动物中观察到这种类型的神经上皮的例子,但是他们在这个例子中观察的乌贼组织在其大小、组织和细胞核的移动方式上与脊椎动物的组织异常相似。这项研究由科尼格实验室的研究助理FrancescaR.Napoli和ChristinaM.Daly领导。接下来,该实验室计划研究头足类动物大脑中不同的细胞类型是如何出现的。科尼格想确定它们是否在不同的时间表达,它们如何决定成为一种类型的神经元而不是另一种,以及这种行动在不同的物种中是否相似。科尼格对摆在面前的潜在发现感到兴奋,他说:"这类工作的一个重要启示是,研究生命的多样性是多么有价值。通过研究这种多样性,你实际上可以真正回到关于甚至我们自己的发展和我们自己的生物医学相关问题的基本想法。你可以真正谈论这些问题。"...PC版:https://www.cnbeta.com.tw/articles/soft/1337677.htm手机版:https://m.cnbeta.com.tw/view/1337677.htm

封面图片

干细胞揭示了PTSD患者的神经元是如何对压力做出反应的

干细胞揭示了PTSD患者的神经元是如何对压力做出反应的该研究于10月20日发表在《NatureNeuroscienc》上,是首个使用诱导多能干细胞模型来研究创伤后应激障碍的研究。PTSD可在严重创伤后发展,对退伍军人和平民来说都是一个巨大的公共健康问题。根据美退伍军人事务部下属的国家创伤后应激障碍中心的数据,每100个美国人中约有6人在其生命中的某个阶段会有创伤后应激障碍。在美国,约有1200万成年人在某一年中患有PTSD。然而,遗传和环境因素对个人临床结果的贡献程度仍是未知的。为了填补这一信息空白,研究小组研究了从Bronx的JamesJPeters退伍军人事务医疗中心招募的39名患有和不患有PTSD的战斗退伍军人的群组。退伍军人进行了皮肤活检,他们的皮肤细胞被重新编程为诱导多能干细胞。伊坎西奈山精神病学和神经科学教授、JamesJPeters退伍军人事务医疗中心心理健康主任、论文资深作者RichaelYehuda博士说道:“将细胞重编程为诱导多能干细胞,就像把细胞带回它们还是胚胎的时候,并且有能力生成身体的所有细胞。然后这些细胞可以分化成跟该人的脑细胞在发生创伤前具有相同属性的神经元,从而来改变其功能方式。来自这些神经元的基因表达网络反映了由遗传和非常早期的发育贡献导致的早期基因活动,因此它们是‘战斗前’或‘创伤前’基因表达状态的反映。”研究人员KristenBrennand博士表示:“两个人可以经历同样的创伤,但他们不一定都会发展成创伤后应激障碍。在患有和不患有PTSD的人的脑细胞中进行这种类型的建模有助于解释遗传学如何使某人更容易受到创伤后应激障碍的影响。”据悉,Brennand是这项研究的共同领导者。为了模仿引发PTSD的压力反应,科学家们将诱导多能干细胞衍生的神经元暴露在压力激素氢化可的松中,这是人体自身皮质醇的合成版本,被用作“战斗或逃跑”反应的一部分。Yehuda博士表示:“向这些细胞添加应激激素模拟了战斗的生物效应,这使我们能够确定不同的基因网络是如何对脑细胞中的应激暴露做出反应的。”通过利用基因表达分析和成像,科学家们发现患有PTSD的人的神经元对这种药理学触发器过度敏感。另外,科学家们还能确定在暴露于压力荷尔蒙后反应不同的特定基因网络。受PTSD影响的人的细胞内部迄今为止,大多数关于PTSD的类似研究都使用了病人的血液样本。然而由于创伤后应激障碍扎根于大脑,科学家们需要一种方法来捕捉易受该障碍影响的个人的神经元如何受到压力的影响。因此,该团队选择使用干细胞,因为它们具有独特的条件,可以提供一个针对病人的、非侵入性的大脑窗口。Brennand博士说道:“你不能轻易地伸手到一个活人的大脑中拉出细胞,所以干细胞是我们检查神经元在病人身上如何表现的最好方法。”NYSCF科学家使用他们的可扩展、自动化、机器人系统--NYSCF全球干细胞阵列--创建干细胞,然后从PTSD患者身上提取谷氨酸神经元。谷氨酸神经元帮助大脑发送兴奋性信号,以前曾跟PTSD存有关联。“由于这是第一个使用干细胞模型研究PTSD的研究,所以研究大量的个体是很重要的,”共同领导这项研究的DanielPaull博士说道,“在这项研究的规模上,自动化是至关重要的。通过阵列,我们可以制作标准化的细胞,从而在众多个体之间进行有意义的比较,以指出可能对发现新疗法至关重要的关键差异。”利用受压PTSD细胞的特征进行新治疗研究小组的基因表达分析揭示了一组基因,这些基因在接触应激激素后在易受PTSD的神经元中特别活跃。“重要的是,我们在神经元中发现的基因特征在患有PTSD的死者的大脑样本中也很明显,这告诉我们,干细胞模型正在提供一个相当准确的反映在世病人大脑中发生的情况,”Paull博士说道。此外,PTSD和非PTSD细胞对压力的反应的区别,这可以为预测哪些人患PTSD的风险较高提供信息。Paull博士继续说道:“我们的发现真正令人兴奋的是它们为加速诊断和治疗创伤后应激障碍提供了机会。重要的是,拥有一个强大的干细胞模型,为‘菜’中的药物筛选提供了一个理想的途径,甚至跨越不同的病人群体。”“我们正在努力寻找已经被批准的药物,可以扭转我们在神经元中看到的超敏性,”Brennad博士补充道,“这样一来,我们发现的任何药物都将有最快的途径来帮助病人。”研究人员计划继续利用他们的诱导多能干细胞模型进一步研究这项研究指出的遗传风险因素,另外还将研究创伤后应激障碍如何影响其他类型的脑细胞从而帮助扩大治疗发现的机会。一项由团队科学促成的研究Brennad博士说道:“这项研究的特别之处在于,它只能由这个小组完成。它涉及到这个领域中一些最好的临床医生、令人难以置信的干细胞生物学家和令人惊叹的精神病学遗传学家。每个小组都有独特的专业知识,这些都不可能由任何一个小组单独完成。”“这项研究是团队科学力量的真正证明,”Paull博士补充道,“当研究人员联合起来时,我们能够提出更大的问题,做出更大的发现,并希望能够为患者带来更大的改变。”NYSCF临时CEODerrickRossi博士说道:“作为与世界级科学家合作的这一里程碑式研究的一部分,NYSCF从PTSD患者身上生成了有史以来第一个诱导多能干细胞模型,我们感到非常自豪。这项合作工作强调了干细胞模型在研究和揭开挑战性疾病方面的独特价值,以及发现可能导致急需治疗的创新策略。”...PC版:https://www.cnbeta.com.tw/articles/soft/1331363.htm手机版:https://m.cnbeta.com.tw/view/1331363.htm

封面图片

焦虑症缓解在望:科学家们发现了关键基因

焦虑症缓解在望:科学家们发现了关键基因四分之一的人一生中至少有一次受到影响,焦虑症的发生是相当普遍的。严重的心理压力可以激活杏仁核神经元的遗传、生化和结构改变--杏仁核是大脑中与压力产生的焦虑有关的部分。这可能导致焦虑症的发展,包括惊恐发作和创伤后应激障碍。然而,目前可用的抗焦虑药物的疗效很低,超过一半的病人在治疗后没有得到缓解。在开发强效抗焦虑药物方面取得的成功也很有限,这是由于目前医学界对焦虑的神经回路和导致与压力有关的神经精神状态的分子事件了解不足。在这项研究中,科学家们试图确定大脑中支撑焦虑的分子事件。他们专注于一组分子,在动物模型中被称为miRNAs。这组重要的分子在人脑中也有发现,它能调节控制杏仁核中细胞过程的多种目标蛋白。在急性应激之后,该团队发现一种叫做miR483-5p的分子在小鼠杏仁核中的数量增加。重要的是,研究小组表明,增加的miR483-5p抑制了另一个基因Pgap2的表达,Pgap2反过来驱动了大脑中神经元形态的变化和与焦虑有关的行为。研究人员共同表明,miR-483-5p作为一个分子制动器,抵消了压力诱导的杏仁核变化,促进焦虑的缓解。发现一个新的杏仁核miR483-5p/Pgap2途径,大脑通过该途径调节对压力的反应,是发现新的、更有力的、急需的焦虑症治疗方法的第一块垫脚石,将加强这一途径。该研究的主要作者之一、布里斯托尔大学生理学、药理学和神经科学学院的MRC研究员和神经科学讲师ValentinaMosienko博士说:"压力可以触发一些神经精神疾病的发作,其根源在于遗传和环境因素的不利组合。虽然低水平的压力被大脑的自然调整能力所抵消,但严重或长期的创伤经历可以克服应激反应的保护机制,导致抑郁症或焦虑症等病症的发展。""miRNAs在战略上准备好控制复杂的神经精神疾病,如焦虑症。但是它们用来调节应激反应和易感性的分子和细胞机制直到现在还基本上是未知的。我们在这项研究中发现的miR483-5p/Pgap2途径,其激活发挥了减少焦虑的作用,为开发人类复杂精神疾病的抗焦虑疗法提供了巨大潜力。"...PC版:https://www.cnbeta.com.tw/articles/soft/1364205.htm手机版:https://m.cnbeta.com.tw/view/1364205.htm

封面图片

科学家发现微塑料可能正在改变哺乳动物的大脑

科学家发现微塑料可能正在改变哺乳动物的大脑最新研究发现,接触微塑料会导致小鼠,尤其是年长小鼠的行为变化和免疫改变。研究发现,微塑料在包括大脑在内的多个组织中积累,可能会导致类似痴呆症的病症。罗斯和她的团队重点研究了接触微塑料对神经行为的影响和炎症反应,以及微塑料在包括大脑在内的组织中的积累。他们发现,微塑料在人体内的渗透与在环境中的渗透一样普遍,从而导致了行为的改变,尤其是在年龄较大的试验对象身上。瑞安神经科学研究所和药学院的生物医学和制药科学助理教授罗斯说:"目前的研究表明,这些微塑料会在整个环境中迁移,并在人体组织中积累;然而,有关微塑料对健康影响的研究,尤其是对哺乳动物的影响,仍然非常有限。"这促使我们小组探索接触微塑料对生物和认知的影响。罗斯的研究小组包括研究助理教授朱塞佩-科波泰利(GiuseppeCOPPOtelli)、生物医学与制药科学研究生劳伦-加斯帕尔(LaurenGaspar)和跨学科神经科学项目研究生悉尼-巴特曼(SydneyBartman),他们在三周的时间里让年轻和年老的小鼠接触饮用水中不同含量的微塑料。他们发现,微塑料暴露会诱发行为变化以及肝脏和脑组织中免疫标记物的改变。被研究的小鼠开始行动和行为异常,表现出类似于人类痴呆症的行为。在年长的动物身上,结果更为显著。"对我们来说,这是惊人的。这些微塑料的剂量并不高,但在很短的时间内,我们就看到了这些变化,"罗斯说。"没有人真正了解这些微塑料在人体内的生命周期,所以我们想解决的部分问题是,随着年龄的增长,会发生什么。随着年龄的增长,你是否更容易受到这些微塑料引起的全身性炎症的影响?你的身体是否能轻易将它们排出体外?你的细胞对这些毒素的反应是否有所不同?"为了了解可能导致这些行为变化的生理系统,罗斯的研究小组调查了微塑料暴露在体内的广泛程度,解剖了几个主要组织,包括大脑、肝脏、肾脏、胃肠道、心脏、脾脏和肺部。研究人员发现,微粒已经开始在包括大脑在内的每个器官以及身体废物中进行生物累积。罗斯说:"在这项研究中,微塑料是通过饮用水口服输送的,因此在胃肠道等组织(消化系统的主要部分)或肝脏和肾脏中检测到微塑料是很有可能的。然而,在心脏和肺部等组织中检测到微塑料表明,微塑料已经超出了消化系统的范围,很可能进入了全身循环。脑血屏障应该是很难渗透的。它是一种抵御病毒和细菌的保护机制,但这些微粒却能进入那里。它实际上已经深入脑组织。"研究结果表明,这种脑渗透还可能导致神经胶质纤维酸性蛋白(称为"GFAP")的减少,这种蛋白支持大脑中的许多细胞过程。罗斯说:"GFAP的减少与一些神经退行性疾病的早期阶段有关,包括阿尔茨海默病的小鼠模型以及抑郁症。我们非常惊讶地发现,微塑料能够诱导GFAP信号的改变。"她打算在今后的工作中进一步研究这一发现。她说:"我们想了解塑料如何改变大脑维持平衡的能力,或者接触塑料如何导致神经紊乱和疾病,如阿尔茨海默病。"...PC版:https://www.cnbeta.com.tw/articles/soft/1380921.htm手机版:https://m.cnbeta.com.tw/view/1380921.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人