一种研究夸克的新方法已经被提出

一种研究夸克的新方法已经被提出夸克是基本粒子,是物质的基本组成部分。它们是我们所知的最小的东西,并不是由任何更小或更简单的东西组成的。夸克有六种不同的"口味":up,down,charm,strange,top与bottom。它们在自然界中从未被单独发现,而是总是与其他夸克结合在一起,形成原子核中的质子和中子,以及其他亚原子粒子如介子。夸克被认为是质子和中子的组成部分,它们构成了宇宙中的大部分物质。对物质的研究似乎有点像打开一叠俄罗斯的马特罗什卡娃娃(套娃),每一层都揭示了另一个熟悉的,但不同的,比前一层更小和更难探索的组件排列。在我们的日常规模中,我们有可以看到和触摸的物体。无论是玻璃中的水还是玻璃本身,这些大多都是分子的排列,小到无法看到。物理学工具、显微镜、粒子加速器等等,让我们更深入地观察,发现分子是由原子构成的。但这并没有停止--原子是由一个被电子包围的原子核构成的。而原子核又是核子(质子和中子)的排列,它赋予原子以特性和质量。但它也没有结束;核子还由不太熟悉的东西组成,即夸克和胶子。而正是在这个规模上,我们对基础物理学知识的限制出现了障碍。至于探索夸克和胶子,它们最好必须相互隔离;然而,目前,这似乎是不可能的。当粒子加速器粉碎原子并创造出原子碎片雨时,夸克和胶子再次结合的速度太快,研究人员无法详细地探索它们。来自东京大学物理系的新研究表明,我们很快就能打开马特罗什卡娃娃的下一层。"为了更好地了解我们的物质世界,我们需要做实验,为了改进实验,我们需要探索我们做事的新方法,"福岛健二教授说。"我们已经概述了一种可能的方法来确定负责夸克禁闭的机制。这一直是物理学中的一个长期问题,如果实现的话,可以揭开关于物质和宇宙结构的一些深层奥秘。"亚原子夸克的质量小得令人难以置信:一个核子中的夸克加起来占总质量的不到2%,胶子似乎完全没有质量。因此,物理学家建议,大部分的原子质量实际上来自夸克和胶子的结合方式,而不是来自这些东西本身。它们被所谓的强力所束缚,这是自然界四种基本力量之一,包括电磁力和引力,而且人们认为强力本身就赋予了核子以质量。这是一个被称为量子色动力学(QCD)的理论的一部分,其中"chromo"来自希腊语,表示颜色,这就是为什么有时会听到夸克被称为红色、绿色或蓝色,尽管事实上它们是无色的。福岛说:"严格证明强力产生质量仍然遥不可及。障碍在于QCD描述事物的方式使理论计算变得困难。我们的成就是证明,在一组特殊的情况下,强作用力可以实现夸克的封闭。我们通过将夸克的一些观察到的参数解释为一个新的变量,我们称之为虚角速度。虽然在本质上是纯粹的数学,但它可以被转换回我们可以控制的真实数值。一旦我们学会如何将我们的想法转化为实验,这应该会导致实现快速旋转夸克物质的异国状态的手段。"...PC版:https://www.cnbeta.com.tw/articles/soft/1340289.htm手机版:https://m.cnbeta.com.tw/view/1340289.htm

相关推荐

封面图片

科学家们可能已经想出了一种研究物质最小形式的方法

科学家们可能已经想出了一种研究物质最小形式的方法但问题在于,这些非常小的物质碎片会立即重新组合在一起,这使得从一开始就几乎不可能得到任何关于它们的信息。这是长期以来阻碍研究我们所知的最低形式的物质的东西,如果不研究这些成分,我们将永远无法正确理解物质如何获得其质量。但是这个问题可能很快就会成为过去,因为科学家们可能已经找到了一种限制夸克的方法,使他们有更好的机会去理解和研究它们。这个解决方案是由东京大学物理系的一组研究人员创造的。这里的理论是,夸克和胶子的大部分质量是由一种未知的力量组成。物理学家将这种力称为"强作用力"。可以肯定的是,这不是一个非常激动人心的名字,但他们说,这种力负责将夸克和胶子固定在一起,基本上将它们捆绑起来,以便它们能够形成核子,然后继续构成原子,这个想法是一种叫做量子色动力学(QCD)的理论的一部分。如果这确实是真的,那么这意味着研究这种所谓的强力变得比研究夸克和胶子本身更重要,因为它似乎拥有更多科学家正在寻找的质量。不幸的是,严格证明这些力将这些微小的物质结合在一起并不容易,这意味着研究它也变得困难。但是,科学家们相信,他们想出的数学方程可以帮助给我们提供一种更深入地研究这种力的方法,而且一旦他们做到这些,它可以帮助我们更好地理解夸克和胶子的整体。了解这一点甚至可以帮助科学家追求创造物质。一项关于该理论的研究发表在《物理评论快报》上。...PC版:https://www.cnbeta.com.tw/articles/soft/1340889.htm手机版:https://m.cnbeta.com.tw/view/1340889.htm

封面图片

寻找暗物质 - 一种前景光明的新方法

寻找暗物质-一种前景光明的新方法宇宙中约80%的物质是一种未被发现的物质,称为"暗物质"。虽然理论上认为暗物质的存在已经有大约90年的历史,但JEDI合作组织的科学家们利用先进的粒子加速器技术,正在开发新的方法来探测暗物质,尽管确凿的证据仍然难以捉摸。该研究的合著者之一约尔格-普雷茨(JörgPretz)解释说:"这是协调星系内可见物质的速度分布与现有知识的唯一方法,一种以前未观察到的'暗'物质形式必须额外地稳定星系"。他同时也是尤里希研究中心核物理研究所的副所长和亚琛工业大学的教授自20世纪30年代以来,物理学家一直在寻找这种物质。科学界不乏各种理论,但还没有人成功地探测到暗物质。沃尔克-海尼博士(VolkerHejny)说:"这是因为暗物质的性质还完全不清楚。"海尼博士也来自于尤利希核物理研究所,和他的同事约尔格-普雷茨(JörgPretz)一样,也是进行这项实验的国际JEDI合作组织的成员。JEDI是JülichElectricDipolemomentInvestigations的缩写,参与合作的科学家自2011年以来一直致力于测量带电粒子的电偶极矩。"暗物质是不可见的,迄今为止只是通过其引力间接地显现出来。它的影响相对微小,这就是为什么只有在质量极大的情况下--比如整个星系--暗物质才会真正显现出来"。理论物理学家已经提出了一些暗物质可能由其组成的假想基本粒子。根据这些粒子的特性,可以使用各种方法来探测它们--这些方法不需要高度复杂的引力效应探测。这些方法包括轴子和类轴子粒子。在他们的实验中,JEDI的科学家们利用了尤利希粒子加速器COSY的一个特殊功能:使用偏振光束。图片来源:ForschungszentrumJülich/Ralf-UweLimbach"轴子最初是为了解决量子色动力学强相互作用理论中的一个问题,"Pretz解释道。"轴子这个名字可以追溯到诺贝尔物理学奖得主弗兰克-威尔切克(FrankWilczek),指的是一种洗涤剂品牌:可以说,这种粒子的存在是为了'清理'物理学理论。"为了探测轴子,JEDI合作项目的科学家们利用了粒子的自旋。"自旋是量子力学的一个独特性质,它使粒子表现得像小型条形磁铁,"Hejny解释说。"例如,医学成像中的磁共振成像(简称MRI)就利用了这一特性。作为这一过程的一部分,原子核的自旋会被强大的外部磁场激发。"核磁共振成像技术也被用来寻找暗物质。在普通核磁共振成像中,原子处于静止状态,而在加速器中,粒子几乎以光速运动。这使得某些领域的检查更加灵敏,测量更加精确。在他们的实验中,JEDI的科学家们利用了尤利希粒子加速器COSY的一个特殊功能,即使用偏振光束。"在传统的粒子束中,粒子的自旋方向是随机的,"Pretz说。"而在偏振粒子束中,自旋是朝一个方向排列的"。全世界只有少数加速器具备这种能力。"如果正如科学家们所猜测的那样,我们周围存在轴子的背景场,那么这将影响自旋的运动--因此最终可能在实验中被检测到。然而,预期的影响微乎其微。测量还不够精确。不过,虽然JEDI实验还没有发现暗物质粒子的证据,但研究人员已经设法进一步缩小了可能的相互作用效应的范围。也许更重要的是,他们能够在寻找暗物质的过程中建立一种新的、有前途的方法。...PC版:https://www.cnbeta.com.tw/articles/soft/1385203.htm手机版:https://m.cnbeta.com.tw/view/1385203.htm

封面图片

从阴影中走出来:一种X射线彩色成像的新方法

从阴影中走出来:一种X射线彩色成像的新方法上图展示了如何使用新开发的方法创建一个图像。两种颜色--绿色和品红色--是由样品中的荧光原子(左)由于X射线的激发而发出的。灰色的圆形物体代表一个在检测器上投下阴影的光学器件。然后,该算法产生一个具有两种颜色的实际图像--其强度代表了样品中荧光原子的密度。与可见光相比,对于"不可见"的辐射,如X射线、中子或伽马射线,还没有类似的强大镜头可以诠释。然而,这些类型的辐射是必不可少的,例如,在核医学和放射学,以及工业测试和材料分析中。X射线荧光的用途包括分析绘画和文物中的化学成分,以确定真实性、来源或生产技术,或在环境保护中分析土壤样本或植物。半导体元件和计算机芯片的质量和纯度也可以用X射线荧光分析来检查。科学家们使用了慕尼黑PNSensor公司开发的X射线彩色相机和一个新颖的成像系统,该系统基本上由物体和探测器之间的一个特殊结构的金涂层板组成,这意味着样品会投下阴影。检测器中测量的强度模式提供了关于样品中荧光原子分布的信息,然后可以用计算机算法进行解码。这种新方法意味着平板可以非常接近物体或检测器,与使用X射线透镜时不同,这使得这是一种实用的方法。第一作者哥廷根大学X射线物理研究所的博士后研究员JakobSoltau博士解释说:"我们已经开发了一种算法,使我们能够快速和稳健地创建一个清晰的图像,同时为每一种X射线颜色。"共同作者、同一研究所的博士生PaulMeyer补充说。"这些光学器件根本无法与普通透镜相比;它们是由瑞士的一家新公司按照我们的精确规格制造的"。这家新成立的公司XRNanotech专门从事纳米结构的研究,由在哥廷根大学完成博士学位的FlorianDöhring博士创立。研究小组负责人蒂姆-萨尔迪特教授总结道。"接下来,我们希望将这种方法扩展到生物样本的三维成像,以及探索成像中的现象,如X射线、中子或核医学中的伽马射线的非弹性散射"。...PC版:https://www.cnbeta.com.tw/articles/soft/1343959.htm手机版:https://m.cnbeta.com.tw/view/1343959.htm

封面图片

研究人员发现一种治疗超级细菌感染的潜在新方法

研究人员发现一种治疗超级细菌感染的潜在新方法这项研究由高威大学的JamesPO'Gara教授和MerveSZeden博士领导,最近发表在mBio杂志上。微生物学教授JamesO'Gara说。"这一发现很重要,因为它揭示了用青霉素类药物治疗MRSA感染的潜在新方法,而青霉素类药物仍然是最安全和最有效的抗生素。"照片显示MRSA生长在两个琼脂平板的表面,一个没有鸟苷(左),一个有鸟苷(右),在这些平板上浸泡了抗生素。抗生素盘周围的清除区表明MRSA被杀死。资料来源:高威大学抗生素耐药性(AMR)危机是对人类健康的最大威胁之一,像MRSA这样的超级细菌给全球医疗资源带来了巨大负担。高威大学的微生物学研究小组表明,当青霉素类抗生素与作为DNA构建块的嘌呤结合时,MRSA可以被更有效地被杀灭。高威大学的博士生AaronNolan和高威大学生物和化学科学学院的MerveSZeden博士资料来源:戈尔韦大学Zeden博士说:"嘌呤核苷、腺苷、黄嘌呤和鸟苷是糖版的DNA构件,我们的工作表明,它们干扰了细菌细胞中的信号系统,而这些信号系统是抗生素抗性所必需的。"由嘌呤衍生的药物已经被用于治疗一些病毒感染和应对癌症。亚伦-诺兰是高威大学的博士生,是该论文的共同第一作者。他说。"寻找使超级细菌对目前许可的抗生素重新敏感的新方法是解决AMR危机的努力的一个关键部分。我们的研究表明,嘌呤核苷有可能使MRSA对青霉素类抗生素重新敏感"。...PC版:https://www.cnbeta.com.tw/articles/soft/1343921.htm手机版:https://m.cnbeta.com.tw/view/1343921.htm

封面图片

研究人员开发出一种利用磁子传输量子信息的新方法

研究人员开发出一种利用磁子传输量子信息的新方法HZDR的研究人员成功地在磁盘中产生了类似于波的激发--即所谓的磁子--来专门操纵碳化硅中原子大小的量子比特。这为量子网络中的信息传输开辟了新的可能性。图片来源:HZDR/MauricioBejarano为了满足这一需求,德累斯顿-罗森多夫亥姆霍兹中心(HZDR)的一个研究小组现在推出了一种传输量子信息的新方法:该小组通过利用磁子(磁性材料中的波状激起)的磁场来操纵量子比特(即所谓的量子比特),磁子发生在微观磁盘中。研究人员在《科学进展》(ScienceAdvances)杂志上发表了他们的研究成果。建造可编程的通用量子计算机是当代最具挑战性的工程和科学研究之一。这种计算机的实现为物流、金融和制药等不同行业领域带来了巨大潜力。然而,由于量子计算机技术在存储和处理信息时存在固有的脆弱性,因此阻碍了实用量子计算机的建造。量子信息被编码在量子比特中,而量子比特极易受到环境噪声的影响。微小的热波动(几分之一度)就可能完全破坏计算。这促使研究人员将量子计算机的功能分布在不同的独立构件中,以努力降低出错率,并利用这些构件的互补优势。"然而,这就带来了一个问题,即如何在模块之间传输量子信息,使信息不会丢失,"HZDR研究员、该刊物第一作者毛里西奥-贝哈拉诺(MauricioBejarano)说。"我们的研究正是在这个特定的利基上,在不同的量子模块之间传输通信。"目前,传输量子信息和寻址量子比特的既定方法是通过微波天线。这是Google和IBM在其超导芯片中使用的方法,也是在这场量子竞赛中处于领先地位的技术平台。"而我们则是通过磁子来寻址量子比特。磁子可被视为穿过磁性材料的磁激发波。这样做的好处是,磁子的波长在微米范围内,比传统微波技术的厘米波短得多。因此,磁子的微波足迹在芯片中花费的空间更少。HZDR小组研究了磁子与碳化硅晶体结构中硅原子空位形成的量子比特的相互作用,碳化硅是一种常用于大功率电子器件的材料。这类量子比特通常被称为自旋量子比特,因为量子信息是由空位的自旋状态编码的。但是,如何利用磁子来控制这类量子比特呢?"通常情况下,磁子是通过微波天线产生的。"贝哈拉诺解释说:"这就带来了一个问题,即很难将来自天线的微波驱动与来自磁子的微波驱动分离开来。"为了将微波从磁子中分离出来,HZDR团队利用了一种在镍铁合金微观磁盘中可以观察到的奇特磁现象。"由于非线性过程,磁盘内的一些磁子具有比天线驱动频率低得多的频率。我们只用这些频率较低的磁子来操纵量子比特"。研究小组强调,他们还没有进行任何量子计算。不过,他们表明,完全用磁子处理量子比特从根本上是可行的。"迄今为止,量子工程界还没有意识到磁子可以用来控制量子比特,"Schultheiß强调说。"但我们的实验证明,这些磁波确实可以派上用场"。为了进一步发展他们的方法,研究小组已经在为未来的计划做准备:他们想尝试控制几个间距很近的单个量子比特,让磁子介导它们的纠缠过程--这是进行量子计算的先决条件。他们的设想是,从长远来看,磁子可以被直接电流激发,其精确度可以达到在量子比特阵列中专门针对单个量子比特。这样就可以将磁子用作可编程量子总线,以极其有效的方式寻址量子比特。虽然未来还有大量工作要做,但该研究小组的研究强调,将磁子系统与量子技术相结合,可以为未来开发实用量子计算机提供有益的启示。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1424810.htm手机版:https://m.cnbeta.com.tw/view/1424810.htm

封面图片

科学家提出搜寻暗物质的新方法

科学家提出搜寻暗物质的新方法自暗物质被发现以来,科学家们一直未能探测到它,即使几十年来在世界各地部署了多个超灵敏粒子探测器实验也无济于事。现在,美国能源部(DOE)SLAC国家加速器实验室的物理学家们提出了一种利用量子设备寻找暗物质的新方法。SLAC物理学家丽贝卡-利恩(RebeccaLeane)是这项新研究的作者之一,她认为大多数暗物质实验都在寻找银河系暗物质,这种暗物质会直接从太空发射到地球上,但另一种暗物质可能已经在地球周围徘徊了很多年。利恩说:"暗物质进入地球后,会四处弹跳,最终被地球的引力场困住。随着时间的推移,这种热化暗物质的密度会比少数松散的星系粒子更高,这意味着它更有可能撞上探测器。不幸的是,热化暗物质的移动速度要比银河系暗物质慢得多,这意味着它传递的能量要比银河系暗物质少得多--传统探测器可能无法看到。"有鉴于此,利恩和SLAC博士后研究员阿尼尔班-达斯找到了SLAC的科学家诺亚-库林斯基,他是一个新实验室的负责人,主要研究用量子传感器探测暗物质。库林斯基说,科学家通常认为这是因为冷却系统不完善或环境中存在热源。但他说,可能还有其他原因:"如果我们实际上有一个完美的冷系统,而我们无法有效冷却它的原因是它不断受到暗物质的轰击呢?"达斯、库林斯基和利恩想知道,超导量子设备是否可以重新设计为热化暗物质探测器。根据他们的计算,激活量子传感器所需的最小能量足够低,约为千分之一电子伏特,因此它可以探测到低能量的银河系暗物质以及悬浮在地球周围的热化暗物质粒子。当然,这并不意味着暗物质是量子设备失灵的罪魁祸首--只是说它是可能的,下一步就是要弄清楚他们能否以及如何将敏感的量子设备变成暗物质探测器。因此,有几件事需要考虑。首先,也许有更好的材料来制造这种装置。利恩说:"我们一开始考虑的是铝,这只是因为铝可能是迄今为止用于探测器的特性最好的材料。但事实可能证明,对于我们正在研究的质量范围和我们想要使用的探测器类型,也许有更好的材料。"利恩说,还有一种可能性是,热化暗物质与量子设备的相互作用不会像银河系暗物质被怀疑与直接探测设备的相互作用那样。在这项研究中只是考虑了暗物质进入并直接弹开探测器的简单情况,但它还可以做很多其他事情。例如,其他粒子可能与暗物质相互作用,改变探测器中粒子的分布方式。"这就是在SLAC工作的好处之一。我们确实有相当多样化的小组在从事许多不同的科学研究,我觉得这个项目是SLAC研究的一个非常好的协同效应。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1429970.htm手机版:https://m.cnbeta.com.tw/view/1429970.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人