多层"液体窗"技术可帮助建筑节约能源

多层"液体窗"技术可帮助建筑节约能源然而,在炎热的夏天,人们可能想要可见光的亮度,但不想要红外线的热量。在冬天,他们可能两者都想要。此外,他们可能希望软化可见光,这样他们就不必整天都眯着眼睛。这就是新的"液体窗口"的用处。这种窗户由本-哈顿教授领导的多伦多大学的一个科学家团队开发,其灵感来自鱿鱼、墨鱼和磷虾的变色皮肤。这些动物能够在其皮肤下的细胞中移动色素,在透明和不透明的状态之间来回变化。去年,研究人员宣布了一种可着色的窗户,其灵感来自于这种能力。液体窗的原型将这一概念进一步推进,它结合了多个透明塑料的堆叠片,其中每一个都有一个毫米厚的微通道网络贯穿其中。通过将含有不同颜料(或其他分子)的液体泵入或泵出每张板材的通道,就有可能为整个窗户选择不同的光学质量组合。例如,通过将可见光阻隔的颜料从一个片材中抽出,同时将红外线阻隔的颜料抽入另一个片材中,窗口可以被设置为让可见光通过,同时阻隔红外线。此外,将光扩散颜料抽入或抽出另一张纸,可以调整房间内可见光的柔和程度。利用基于原型性能的计算机模型,科学家们估计,即使液体窗户只用于调节红外光的传输,建筑物每年的加热、冷却和照明能源消耗也会减少约25%。如果这些窗户也被用来控制可见光,这个数字将跃升至约50%。"建筑物使用大量的能源来加热、冷却和照亮它们内部的空间,"多伦多大学最近毕业的拉斐尔-凯说,他是关于这项研究的一篇论文的主要作者。"如果我们能从战略上控制进入我们建筑物的太阳能的数量、类型和方向,我们就能大规模地减少我们要求加热器、冷却器和灯所做的工作。"这篇论文最近发表在PNAS杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1342381.htm手机版:https://m.cnbeta.com.tw/view/1342381.htm

相关推荐

封面图片

AI协助设计一种透明的窗户涂料 可在不使用能源的情况下冷却建筑物

AI协助设计一种透明的窗户涂料可在不使用能源的情况下冷却建筑物这种窗膜(左上角用手指拿着)通过允许可见光进入,同时反射不可见的红外线和紫外线,并将热量辐射到外太空,使房间保持明亮和凉爽。资料来源:改编自ACS能源通讯2022,DOI:10.1021/acsenergylett.2c01969根据以前的研究估计,冷却占全球能源消耗的15%左右。这种需求可以通过一种能够阻挡太阳紫外线和近红外光的窗户涂层来降低。这些是太阳光谱中人类不可见的部分,但它们通常通过玻璃来加热一个封闭的房间。如果涂层以穿过大气层进入外层空间的波长从窗户表面辐射热量,能源的使用甚至可以进一步减少。然而,很难设计出能同时满足这些标准的材料,同时还能传输可见光,这是需要的,这样它们就不会干扰视线了。EungkyuLee、TengfeiLuo及其同事着手设计一种"透明辐射冷却器"(TRC),它可以做到这一点。该团队用AI构建了计算机模型,TRCs由普通材料(如二氧化硅、氮化硅、氧化铝或二氧化钛)在玻璃底座上交替形成的薄层组成,上面有一层聚二甲基硅氧烷薄膜。他们使用机器学习和量子计算指导的迭代方法来优化层的类型、顺序和组合,量子计算使用亚原子粒子来存储数据。这种计算方法比传统计算机更快、更好地进行优化,因为它可以在几分之一秒内有效地测试所有可能的组合。这产生了一种涂层设计,在制造时,除了市场上最好的商业减热玻璃之一外,还击败了传统设计的TRC的性能。研究人员说,在炎热、干燥的城市,与传统窗户相比,优化的TRC可能会减少31%的冷却能源消耗。他们指出,他们的发现可以应用于其他领域,因为TRC也可以用在汽车和卡车的窗户上。此外,该小组的量子计算支持的优化技术可用于设计其他类型的复合材料。...PC版:https://www.cnbeta.com.tw/articles/soft/1331631.htm手机版:https://m.cnbeta.com.tw/view/1331631.htm

封面图片

含水材料使窗户有选择性地阻挡光线与热量

含水材料使窗户有选择性地阻挡光线与热量这种新型动态窗户可以在正常的透明模式(透光透热)、阻挡热量但保持透明的模式和有色模式(阻挡部分光线但不阻挡热量)之间切换。这样,用户就可以在一年四季都享受到遮阳效果。这一切的关键在于一种叫做氧化钨的小材料,它经常出现在基于电致变色原理的动态玻璃窗中。通常情况下,氧化钨是透明的,当你施加电信号时,它就会变暗并阻挡光线,这使得它在按需着色的窗户上非常方便。但在新的研究中,北卡罗来纳大学的研究人员发现了它全新的隐藏技能:加入水后,它就变成了水合氧化钨,当它被用于电致变色窗时,就会有额外的设置。关闭时,它对光和热都保持透明,非常适合那些单调的冬日,因为这时候人们需要尽可能多的光和热。当一些电子和锂离子注入这种材料时,它首先会经历一个阻挡红外线(感觉到热)的阶段,同时对可见光波长保持透明。最后,随着更多的电子进入材料,它会过渡到一个黑暗阶段,在这个阶段,它既能阻挡可见光,也能阻挡红外线,非常适合夏天使用。氧化钨水合物究竟为何能发挥这样的作用,目前还不确定,但北卡罗来纳大学的科学家们有一个假设。"晶体结构中水的存在使结构密度降低,因此当锂离子和电子注入材料时,结构更不易变形,"该研究的第一作者杰内尔-福图纳托(JenelleFortunato)说。"我们的假设是,由于氧化钨水合物在变形之前能比普通氧化钨容纳更多的锂离子,因此会产生两种模式。一种是'冷'模式,即注入锂离子和电子会影响光学特性,但结构尚未发生变化,这种模式会吸收红外线。然后,在结构发生变化后,会出现一种'暗'模式,同时阻挡可见光和红外线。"虽然市面上并不缺乏动态窗户的设计者,但在一个系统中通常不会提供这么多的模式。即使有,通常也需要较笨重的装置。在这种情况下,由于只需要一种材料,玻璃的厚度和能源需求只与普通的氧化钨窗差不多。该研究的共同通讯作者迪莉娅-米利隆(DeliaMilliron)说:"在一种已经为智能窗户界所熟知的单一材料中发现双波段(红外线和可见光)光控技术,可能会加速具有增强功能的商业产品的开发。"该研究发表在《ACSPhotonics》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1386185.htm手机版:https://m.cnbeta.com.tw/view/1386185.htm

封面图片

科学家开发新水凝胶玻璃:阻挡太阳热量的同时允许可见光通过

科学家开发新水凝胶玻璃:阻挡太阳热量的同时允许可见光通过今年夏天,世界上很多地方都是闷热的,很多人都在考虑用更好的方法来冷却建筑物。中国的研究人员现在用水凝胶玻璃来装饰窗户,这种材料可以有选择地阻挡来自太阳的热量而不阻挡其光线。普通的玻璃被设计成允许可见光通过并照亮房间,但它与红外光的相互作用--作为热的感觉--就不那么理想了。玻璃让阳光中的近红外辐射通过,同时阻止中红外光从房间中逸出,从而使建筑物升温。在夏天,这种闷热会促使人们更频繁地打开空调,从而导致更多的能源消耗。为了尝试解决这个问题,武汉大学的科学家们现在已经试验了新的窗户材料,这些材料与光的互动方式不同。研究人员在玻璃上设计了一个只有几毫米厚的水凝胶涂层,以反射更多来自外部的近红外光,并允许更多的中红外光从内部流出,同时对可见光保持同样的透明。这个想法是可见光的光子可以穿透超过1米进入水中,而光谱中近红外部分的光子只能使其达到几毫米。由于水凝胶主要是水,这使其成为一种有用的选择性屏障。在测试中,研究小组发现水凝胶玻璃直接向太空发射多达96%的红外光,因为这些波长没有被大气阻挡。这将有助于保持建筑物内部的温度,其方式与其他辐射冷却系统相似。与此同时,普通玻璃对太阳辐射能的透射比约为84%。重要的是,水凝胶玻璃看起来并不比普通玻璃暗淡--事实上,它实际上能让更多的光线通过。根据水凝胶层的厚度,它允许高达92.8%的可见光进入房间,而普通玻璃为92.3%。研究小组在尺寸为20x20x20厘米的模型房屋上测试了水凝胶玻璃的性能,这些房屋有厚厚的隔热墙和一个大窗户。传感器显示,水凝胶玻璃窗将室内温度降低了3.5℃。研究小组表示,这种材料可以帮助减少制冷的能源消耗,这将有利于环境和减少成本。水凝胶也很常见,而且价格低廉,所以推广起来应该相对简单,这可能使它们比其他更复杂的智能窗更有优势。这项研究发表在《光电子学前沿》杂志上。PC版:https://www.cnbeta.com/articles/soft/1310863.htm手机版:https://m.cnbeta.com/view/1310863.htm

封面图片

由变色龙启发的建筑材料可改变其吸收或散发的热量

由变色龙启发的建筑材料可改变其吸收或散发的热量在炎热的日子里,这种材料可以发射出它所包含的高达92%的红外热量,帮助冷却建筑物内部。然而,在较冷的日子里,这种材料只发出7%的红外线,帮助建筑物保持温暖。"我们基本上想出了一种低能耗的方法来对待建筑物,就像对待一个人一样;当你冷的时候,你就加一层,当你热的时候,你就脱一层,"领导这项研究的许宝春助理教授说,他发表在《自然可持续性》上。"这种智能材料让我们在没有大量能源的情况下保持建筑物的温度"。受气候变化的驱动根据一些估计,建筑物占全球能源消耗的30%,并排放了全球所有温室气体的10%。这一能源足迹的大约一半归因于室内空间的加热和冷却。"长期以来,我们大多数人都认为室内温度控制是理所当然的,没有想过它需要多少能源,"许说。"如果我们想要一个负碳的未来,我认为我们必须考虑多样化的方式,以更节能的方式控制建筑温度。"研究人员先前已经开发了辐射冷却材料,通过提高其发射红外线的能力来帮助保持建筑物的温度,红外线是人和物体辐射出来的无形热量。也有一些材料可以在寒冷的气候中防止红外线的发射。这种材料包含一个可以采取两种构象的层:保留大部分红外线热量的固体铜,这有助于保持建筑物的温暖;或者是发射红外线的水溶液,这可以帮助冷却建筑物"一个简单的思考方式是,如果你有一个完全黑色的建筑面向太阳,它将比其他建筑更容易升温,"PME研究生隋晨曦说,他是新手稿的第一作者。这种被动加热在冬天可能是一件好事,但在夏天就不是了。随着全球变暖导致极端天气事件和多变的天气越来越频繁,建筑物需要能够适应;很少有气候需要全年供暖或全年空调。从金属到液体再到液体许和他的同事设计了一种不可燃的"电致变色"建筑材料,它包含一个可以呈现两种构象的层:保留大部分红外线热量的固体铜,或发射红外线的水溶液。在任何选定的触发温度下,该设备可以通过将铜沉积到薄膜中,或将铜剥离,使用极少量的电力来诱导两种状态之间的化学变化。在这篇新论文中,研究人员详细说明了该装置如何在金属和液体状态之间快速和可逆地切换,即使经过1800次循环,在两种构象之间切换的能力仍然有效,因此这种智能材料可以在不需要大量能源的情况下保持建筑物的温度。该团队创建了模型,说明他们的材料如何能在美国15个不同城市的典型建筑中减少能源成本。他们报告说,在一个普通的商业建筑中,用于诱导材料电致变色的电力将不到该建筑总用电量的0.2%,但可以节省该建筑每年HVAC能耗的8.4%。"一旦你在不同的状态之间切换,你不需要应用更多的能量来保持任何一种状态,"许说。"因此,对于你不需要在这些状态之间频繁切换的建筑,它的用电量真的可以忽略不计。"扩大规模到目前为止,许的小组只创造了大约六厘米宽的材料碎片。然而,他们设想,许多这样的材料碎片可以像瓦片一样被组装成更大的板材。他们说,这种材料也可以进行调整,以使用不同的定制颜色--水相是透明的,几乎任何颜色都可以放在它后面而不影响其吸收红外线的能力。研究人员现在正在研究制造这种材料的不同方法。他们还计划探究该材料的中间状态如何能够发挥作用。"我们证明了辐射控制可以在整个不同季节控制广泛的建筑温度方面发挥作用,我们正在继续与工程师和建筑部门合作,研究这如何能够为一个更可持续的未来做出贡献"。...PC版:https://www.cnbeta.com.tw/articles/soft/1343391.htm手机版:https://m.cnbeta.com.tw/view/1343391.htm

封面图片

新型玻璃膜可将温度降低7.2°C 显著减少建筑能源消耗

新型玻璃膜可将温度降低7.2°C显著减少建筑能源消耗在炎热的天气里,家中高达87%的热量是通过窗户散发的。阳光中的紫外线很容易穿过玻璃,使房间升温,从而增加了您需要打开空调的可能性,或者通过拉上窗帘或拉下百叶窗来放弃任何光线(同样,也放弃了美景)。不过,圣母大学的研究人员已经开发出一种窗户涂层,可以阻挡产生热量的紫外线和红外线,同时允许可见光进入,从而降低室温和制冷能耗。透明涂层在减少产生热量的紫外线和红外线的同时,还能提供完整的视野圣母大学MÖNSTER实验室(分子/纳米级传输和能源研究实验室)负责人罗腾飞说:"就像偏振太阳镜一样,我们的涂层可以降低入射光的强度,但与太阳镜不同的是,我们的涂层即使在不同角度倾斜时也能保持清晰和有效。"2022年,罗和他的同事利用平面多层(PML)光子结构制造了一种玻璃涂层。这些堆叠的超薄层具有独特的折射率,可以根据光的波长选择性地透射或反射光线。他们将二氧化硅、氧化铝和氧化钛堆叠在玻璃基底上,再在上面覆盖一层薄薄的硅聚合物(PDMS),以反射热辐射(即受热表面向各个方向发射的电磁辐射),从而产生了一种透明涂层,他们说这种涂层的性能优于市场上的其他减热涂层。研究人员决心改进他们之前的工作。由于窗户通常是垂直安装的,一天中直射到窗户上的阳光会随着太阳的移动而变化。现有的窗户涂层往往针对以90度角进入的光线进行优化,因此它们阻挡光线的能力取决于所谓的太阳入射角。中午是一天中最热的时候,太阳光以斜角射入窗户,这意味着大多数涂层的阻挡效果较差。研究人员没有采用试错法来解决这个问题,而是使用了量子计算辅助机器学习模型。具体来说,他们使用了主动学习和量子退火,前者是机器学习的一个子集,其中学习算法可以交互式地询问用户以标注数据,后者则利用量子物理学来寻找最优或接近最优的元素组合。量子辅助主动学习方法使研究人员能够优化PML结构的配置,并为他们带来了绝对的优势,罗告诉《新图集》。"它可以用来解决非常复杂的优化和设计问题,"他说。"这项工作中的复杂优化问题很难用传统算法来解决。"研究人员利用以前使用过的元件,制造出了一种透明涂层,可以在很大的入射角度范围内选择性地透射和反射光线。然后,他们对其进行了测试。镀膜窗户和普通玻璃窗户被垂直放置在相同的室外试验室中。研究人员测量了每个室的白天温度。他们还将玻璃窗水平放置,面向天空,模拟机动车的天窗进行测试。与普通玻璃相比,镀膜玻璃表现出更优越的性能,在各种入射角度下都能将温度降低41.7°F至45°F(5.4°C7.2°C)。"阳光与窗户之间的角度一直在变化,"罗说。"无论太阳在天空中的位置如何,我们的涂层都能保持功能性和效率。"为了估算使用光子结构作为窗户的制冷节能效果,研究人员使用EnergyPlus软件模拟了不同城市标准办公室的能耗。结果表明,美国所有城市每年可节约高达97.5兆焦耳/平方米。这种节能效果在世界各地的城市都得到了体现,包括热带气候地区的城市。上图:地图显示美国使用窗户涂层后估计每年可节省的制冷能源。下图:全球16个选定城市的年制冷能耗估算。研究人员预计,他们的新型窗户涂层将有多种用途,包括商业、住宅建筑和汽车。"我认为它对汽车车窗特别有用,"罗告诉《新地图集》。"它可以用作天窗/月窗玻璃。它甚至可以用于挡风玻璃,你必须保持挡风玻璃的透明,但它会泄露大量的空间加热紫外线和红外(红外线)阳光。"研究人员仍需确定窗口涂层的可扩展性。"这还不得而知,"罗说。"我不能说它是否......更便宜,但随着我们努力扩大规模,它们可能会很便宜。这种涂层可以使用工业规模的涂层工艺制造。涂层中的材料都是非常普通的材料(没有外来材料)。"这项研究发表在《细胞报告物理科学》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1426287.htm手机版:https://m.cnbeta.com.tw/view/1426287.htm

封面图片

科学家找到让红外线在室温下可见的新方法

科学家找到让红外线在室温下可见的新方法研究人员开发出一种名为MIRVAL的方法,可在室温下将中红外光子转换为可见光子,从而实现单分子光谱学,并在气体传感、医疗诊断、天文学和量子通信领域得到广泛应用。在使用量子系统的新方法中,研究小组利用分子发射器将低能量的近红外光子转换为高能量的可见光光子。这项新的创新有能力帮助科学家在室温下检测中红外,并在单分子水平上进行光谱分析。伯明翰大学助理教授、该研究的第一作者RohitChikkaraddy博士解释说:"分子中保持原子间距的键会像弹簧一样振动,这些振动会产生非常高的共振频率。这些弹簧可以被人眼不可见的中红外光激发。在室温下,这些弹簧是随机运动的,这意味着探测中红外光的一大挑战就是要避免这种热噪声。现代探测器依赖于冷却半导体器件,这些器件耗能高、体积大,但我们的研究提出了一种在室温下探测这种光的令人兴奋的新方法"。这种新方法被称为中红外振动辅助发光(MIRVAL),使用的分子具有中红外光和可见光两种功能。研究小组能够将分子发射器组装成一个非常小的等离子腔体,该腔体在中红外和可见光范围内都能产生共振。他们进一步设计了这种腔体,使分子振动态和电子态能够相互作用,从而将中红外光有效地转化为增强的可见光。Chikkaraddy博士继续说道:"最具挑战性的方面是将三种截然不同的长度尺度--数百纳米的可见光波长、小于一纳米的分子振动和上万纳米的中红外波长--整合到一个平台中,并将它们有效地结合在一起。"研究人员通过创建皮腔--由金属面上的单原子缺陷形成的捕获光的难以置信的小空腔--能够实现低于一立方纳米的极端光约束体积。这意味着研究小组可以将中红外光限制在单个分子的范围内。这一突破能够加深人们对复杂系统的理解,并打开通往红外活性分子振动的大门,而在单分子水平上通常是无法实现的。但事实证明,除了纯粹的科学研究之外,MIRVAL还能在许多领域发挥作用。Chikkaraddy博士总结道:"MIRVAL可以有多种用途,如实时气体传感、医疗诊断、天文观测和量子通信,因为我们现在可以看到单个分子在MIR频率下的振动指纹。能够在室温下探测近红外,意味着探索这些应用和在这一领域开展进一步研究变得更加容易。通过进一步改进,这种新方法不仅可以应用于塑造未来近红外技术的实用设备中,而且还能释放出连贯操纵分子量子系统中'带弹簧的球'原子错综复杂的相互作用的能力"。...PC版:https://www.cnbeta.com.tw/articles/soft/1380635.htm手机版:https://m.cnbeta.com.tw/view/1380635.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人