由变色龙启发的建筑材料可改变其吸收或散发的热量

由变色龙启发的建筑材料可改变其吸收或散发的热量在炎热的日子里,这种材料可以发射出它所包含的高达92%的红外热量,帮助冷却建筑物内部。然而,在较冷的日子里,这种材料只发出7%的红外线,帮助建筑物保持温暖。"我们基本上想出了一种低能耗的方法来对待建筑物,就像对待一个人一样;当你冷的时候,你就加一层,当你热的时候,你就脱一层,"领导这项研究的许宝春助理教授说,他发表在《自然可持续性》上。"这种智能材料让我们在没有大量能源的情况下保持建筑物的温度"。受气候变化的驱动根据一些估计,建筑物占全球能源消耗的30%,并排放了全球所有温室气体的10%。这一能源足迹的大约一半归因于室内空间的加热和冷却。"长期以来,我们大多数人都认为室内温度控制是理所当然的,没有想过它需要多少能源,"许说。"如果我们想要一个负碳的未来,我认为我们必须考虑多样化的方式,以更节能的方式控制建筑温度。"研究人员先前已经开发了辐射冷却材料,通过提高其发射红外线的能力来帮助保持建筑物的温度,红外线是人和物体辐射出来的无形热量。也有一些材料可以在寒冷的气候中防止红外线的发射。这种材料包含一个可以采取两种构象的层:保留大部分红外线热量的固体铜,这有助于保持建筑物的温暖;或者是发射红外线的水溶液,这可以帮助冷却建筑物"一个简单的思考方式是,如果你有一个完全黑色的建筑面向太阳,它将比其他建筑更容易升温,"PME研究生隋晨曦说,他是新手稿的第一作者。这种被动加热在冬天可能是一件好事,但在夏天就不是了。随着全球变暖导致极端天气事件和多变的天气越来越频繁,建筑物需要能够适应;很少有气候需要全年供暖或全年空调。从金属到液体再到液体许和他的同事设计了一种不可燃的"电致变色"建筑材料,它包含一个可以呈现两种构象的层:保留大部分红外线热量的固体铜,或发射红外线的水溶液。在任何选定的触发温度下,该设备可以通过将铜沉积到薄膜中,或将铜剥离,使用极少量的电力来诱导两种状态之间的化学变化。在这篇新论文中,研究人员详细说明了该装置如何在金属和液体状态之间快速和可逆地切换,即使经过1800次循环,在两种构象之间切换的能力仍然有效,因此这种智能材料可以在不需要大量能源的情况下保持建筑物的温度。该团队创建了模型,说明他们的材料如何能在美国15个不同城市的典型建筑中减少能源成本。他们报告说,在一个普通的商业建筑中,用于诱导材料电致变色的电力将不到该建筑总用电量的0.2%,但可以节省该建筑每年HVAC能耗的8.4%。"一旦你在不同的状态之间切换,你不需要应用更多的能量来保持任何一种状态,"许说。"因此,对于你不需要在这些状态之间频繁切换的建筑,它的用电量真的可以忽略不计。"扩大规模到目前为止,许的小组只创造了大约六厘米宽的材料碎片。然而,他们设想,许多这样的材料碎片可以像瓦片一样被组装成更大的板材。他们说,这种材料也可以进行调整,以使用不同的定制颜色--水相是透明的,几乎任何颜色都可以放在它后面而不影响其吸收红外线的能力。研究人员现在正在研究制造这种材料的不同方法。他们还计划探究该材料的中间状态如何能够发挥作用。"我们证明了辐射控制可以在整个不同季节控制广泛的建筑温度方面发挥作用,我们正在继续与工程师和建筑部门合作,研究这如何能够为一个更可持续的未来做出贡献"。...PC版:https://www.cnbeta.com.tw/articles/soft/1343391.htm手机版:https://m.cnbeta.com.tw/view/1343391.htm

相关推荐

封面图片

受生物启发的变色涂料既可为房屋增温 也可为房屋降温

受生物启发的变色涂料既可为房屋增温也可为房屋降温该图表说明了受变色龙启发的涂层如何对炎热和寒冷的室外温度做出反应图/美国化学学会变色龙原产于非洲西南部,当环境温度升高时,它的皮肤会变成浅灰色。这样做可以反射射入阳光中的高温红外线波长,防止身体过热。然而,当气温下降时,爬行动物的皮肤就会呈现出深褐色的吸热颜色。在哈尔滨工业大学王富强教授的带领下,一个国际科学家团队着手将这种功能复制到一种可变色的液体涂层中,并将其应用于房屋和其他建筑物的屋顶和外墙。这种"温度适应性辐射冷却涂层"(TARCC)含有微胶囊,其中填充了聚偏氟乙烯,这种化学物质会随着温度的变化而改变颜色。为了测试这种涂层,研究人员将其涂在铝箔覆盖的聚苯乙烯盒子上,然后让其干燥成膜。当薄膜被加热到68ºF(20ºC)时,颜色开始从深灰色变为浅灰色。当温度达到86ºF(30ºC)时,它的颜色变得非常浅,可以反射高达93%的太阳辐射。在随后的实验中,TARCC被应用于微型房屋式室外建筑,并在整个四季中对其进行监测。作为对照,其他相同的结构则覆盖了普通白色涂料、被动辐射冷却涂料和蓝色钢瓦。在炎热的夏季,TARCC不仅比白色涂料和钢瓦凉爽得多,而且是唯一一种能在春秋两季室外温度全天波动时在加热和冷却状态之间切换的材料。有关这项研究的论文最近发表在《纳米快报》(NanoLetters)杂志上。另外一个有趣的现象是,麻省理工学院的科学家们之前开发出了受变色龙启发的Thermeleon屋顶瓦片,这种瓦片可以根据温度变化在黑白两种颜色之间切换。...PC版:https://www.cnbeta.com.tw/articles/soft/1385545.htm手机版:https://m.cnbeta.com.tw/view/1385545.htm

封面图片

新型辐射冷却织物可抵御城市高温

新型辐射冷却织物可抵御城市高温目前已有一些织物和建筑材料能利用辐射制冷(物体以中红外辐射形式向外释放热量)原理来降温,但这些材料大多只考虑了来自太阳的辐射,而没有考虑城市建筑物和路面发出的红外线辐射。新开发的织物同样利用了辐射制冷原理。它可以选择性地发出能逃离地球大气层的红外辐射,同时还能阻挡太阳辐射和周围建筑物发出的红外辐射,从而让人在“城市热岛”环境中保持凉爽。这种织物分3层:内层由羊毛或棉等常见服装面料制成;中层由银纳米线制成,能反射大部分阳光辐射;外层是由一种名为聚甲基戊烯的塑料材料制成,这种材料对大多数波长既不吸收也不反射,但会发射一小段红外辐射。室外测试显示,这种织物的温度比普通丝绸低8.9℃,比宽带发射型织物低2.3℃。在皮肤上测试时,这种织物的温度比棉织物低1.8℃。研究人员表示,从理论上讲,这种微小的温度差异可能使人在暴露于高温下仍感觉舒适的时间增加。...PC版:https://www.cnbeta.com.tw/articles/soft/1435223.htm手机版:https://m.cnbeta.com.tw/view/1435223.htm

封面图片

含水材料使窗户有选择性地阻挡光线与热量

含水材料使窗户有选择性地阻挡光线与热量这种新型动态窗户可以在正常的透明模式(透光透热)、阻挡热量但保持透明的模式和有色模式(阻挡部分光线但不阻挡热量)之间切换。这样,用户就可以在一年四季都享受到遮阳效果。这一切的关键在于一种叫做氧化钨的小材料,它经常出现在基于电致变色原理的动态玻璃窗中。通常情况下,氧化钨是透明的,当你施加电信号时,它就会变暗并阻挡光线,这使得它在按需着色的窗户上非常方便。但在新的研究中,北卡罗来纳大学的研究人员发现了它全新的隐藏技能:加入水后,它就变成了水合氧化钨,当它被用于电致变色窗时,就会有额外的设置。关闭时,它对光和热都保持透明,非常适合那些单调的冬日,因为这时候人们需要尽可能多的光和热。当一些电子和锂离子注入这种材料时,它首先会经历一个阻挡红外线(感觉到热)的阶段,同时对可见光波长保持透明。最后,随着更多的电子进入材料,它会过渡到一个黑暗阶段,在这个阶段,它既能阻挡可见光,也能阻挡红外线,非常适合夏天使用。氧化钨水合物究竟为何能发挥这样的作用,目前还不确定,但北卡罗来纳大学的科学家们有一个假设。"晶体结构中水的存在使结构密度降低,因此当锂离子和电子注入材料时,结构更不易变形,"该研究的第一作者杰内尔-福图纳托(JenelleFortunato)说。"我们的假设是,由于氧化钨水合物在变形之前能比普通氧化钨容纳更多的锂离子,因此会产生两种模式。一种是'冷'模式,即注入锂离子和电子会影响光学特性,但结构尚未发生变化,这种模式会吸收红外线。然后,在结构发生变化后,会出现一种'暗'模式,同时阻挡可见光和红外线。"虽然市面上并不缺乏动态窗户的设计者,但在一个系统中通常不会提供这么多的模式。即使有,通常也需要较笨重的装置。在这种情况下,由于只需要一种材料,玻璃的厚度和能源需求只与普通的氧化钨窗差不多。该研究的共同通讯作者迪莉娅-米利隆(DeliaMilliron)说:"在一种已经为智能窗户界所熟知的单一材料中发现双波段(红外线和可见光)光控技术,可能会加速具有增强功能的商业产品的开发。"该研究发表在《ACSPhotonics》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1386185.htm手机版:https://m.cnbeta.com.tw/view/1386185.htm

封面图片

用柠檬和椰子制成的建筑材料可以帮助家庭取暖

用柠檬和椰子制成的建筑材料可以帮助家庭取暖这种新的复合材料是瑞典斯德哥尔摩KTH皇家理工学院生物复合材料系的一个研究小组的工作,它利用了三种可再生材料来源:椰子、柠檬和木材。研究人员首先通过去除木质素在木材中创造了一个开放的孔隙结构,这也剥去了其颜色。然后用丙烯酸柠檬烯(可从果汁行业的果皮废料中获取)和一种基于椰子的分子来填充这些空隙。当复合材料加热时,例如由于暴露在阳光下或环境温度升高,丙烯酸亚麻油酯变成了聚合物,将椰子分子困在其中。发生转变的温度可以根据要求定制,但在这个项目中被设定为舒适的24℃(75°F)。当材料冷却时,这个过程会发生逆转。KTH研究员CélineMontanari说:"其优雅之处在于,椰子分子可以从吸收能量的固体过渡到液体;或者从释放能量的液体过渡到固体,这与水的冻结和融化方式基本相同。"团队成员PeterOlsén补充说:"通过这种转变,我们可以加热或冷却我们的周围环境,无论需要什么。"尽管尚未准备好用于建筑,但"木质复合热能电池"最初可能的应用是作为室内隔断墙,或者,由于该材料有一定程度的透明度,可以作为某种屏幕材料使用。然而,该团队表示,在它准备作为外部建筑材料使用之前,还需要更多的工作。据估计,在建筑施工中每使用100公斤(220磅)的材料,每天可节省约2.5千瓦时--假设环境温度为24℃--尽管它也可能在花园中找到用途。Olsén问道:"为什么不将它作为温室的未来材料呢?当阳光照射时,木材变得透明,储存更多的能量,而在晚上,它变得多云,释放白天储存的热量。这将有助于减少加热的能源消耗,同时提供更好的生长。"这项研究发表在《小》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1352261.htm手机版:https://m.cnbeta.com.tw/view/1352261.htm

封面图片

斯坦福研发多彩新涂料能阻挡热量 使夏季更凉爽、冬季更温暖

斯坦福研发多彩新涂料能阻挡热量使夏季更凉爽、冬季更温暖用新型红外线阻隔涂料涂刷的一系列物体,展示了它的各种颜色图/彭雨灿随着气温变得越来越极端,人们在盛夏和寒冬会更频繁地躲进室内,吹空调或开暖气。但令人沮丧的是,这些耗能系统只会让问题变得更糟。因此,为了减轻一些压力,科学家们一直在研究能为建筑物或车辆被动加热或降温的材料和涂层。一些材料通过反射太阳光来工作,而另一些则利用辐射冷却将热量以红外波的形式发射到天空中。在这项新的研究中,斯坦福大学的研究小组开发了一种新型涂料,它能显著阻隔热量,使建筑物内部根据需要保持温暖或凉爽,而不会消耗大量能源。对于那些可能对反光超白涂料望而却步的审美人士来说,这种涂料还有多种颜色可供选择。这种新型涂料由两层组成。下层含有铝片,能反射高达80%的红外线辐射,防止热量透过铝片。在这层之上,是一层对红外线透明的超薄外层,由不同颜色的无机纳米颗粒组成。研究人员的想法是,这种涂料可以涂在建筑物的外部,在夏天隔绝热量,而在冬天则可以涂在内部墙壁上,更好地保持室内热量。研究小组测试了白色、蓝色、红色、黄色、绿色、橙色、紫色和深灰色的油漆样品,发现每种油漆对中红外光的反射能力都比相同颜色的传统油漆强10倍左右。在实验室实验中,新型油漆的加热能耗降低了约36%,制冷能耗降低了20%以上。接下来,研究人员对美国各地不同气候条件下的中型公寓楼进行了模拟实验,这些公寓楼内外都涂上了新材料,结果发现,一年下来,供暖和制冷的总能耗下降了约7.4%。此外,他们还对涂料的耐久性进行了测试,结果发现这些涂料具有防水性,在80°C(176°F)的高温或-196°C(-321°F)的低温下暴露一周后,其性能也没有任何下降。高酸度和低酸度环境对它们的影响也不大。研究人员说,经过进一步调整,这种新型涂料可以成为被动式气候控制的关键工具,减少对高能耗的暖通空调系统的依赖。这项研究发表在《美国国家科学院院刊》(PNAS)上。...PC版:https://www.cnbeta.com.tw/articles/soft/1377197.htm手机版:https://m.cnbeta.com.tw/view/1377197.htm

封面图片

多层"液体窗"技术可帮助建筑节约能源

多层"液体窗"技术可帮助建筑节约能源然而,在炎热的夏天,人们可能想要可见光的亮度,但不想要红外线的热量。在冬天,他们可能两者都想要。此外,他们可能希望软化可见光,这样他们就不必整天都眯着眼睛。这就是新的"液体窗口"的用处。这种窗户由本-哈顿教授领导的多伦多大学的一个科学家团队开发,其灵感来自鱿鱼、墨鱼和磷虾的变色皮肤。这些动物能够在其皮肤下的细胞中移动色素,在透明和不透明的状态之间来回变化。去年,研究人员宣布了一种可着色的窗户,其灵感来自于这种能力。液体窗的原型将这一概念进一步推进,它结合了多个透明塑料的堆叠片,其中每一个都有一个毫米厚的微通道网络贯穿其中。通过将含有不同颜料(或其他分子)的液体泵入或泵出每张板材的通道,就有可能为整个窗户选择不同的光学质量组合。例如,通过将可见光阻隔的颜料从一个片材中抽出,同时将红外线阻隔的颜料抽入另一个片材中,窗口可以被设置为让可见光通过,同时阻隔红外线。此外,将光扩散颜料抽入或抽出另一张纸,可以调整房间内可见光的柔和程度。利用基于原型性能的计算机模型,科学家们估计,即使液体窗户只用于调节红外光的传输,建筑物每年的加热、冷却和照明能源消耗也会减少约25%。如果这些窗户也被用来控制可见光,这个数字将跃升至约50%。"建筑物使用大量的能源来加热、冷却和照亮它们内部的空间,"多伦多大学最近毕业的拉斐尔-凯说,他是关于这项研究的一篇论文的主要作者。"如果我们能从战略上控制进入我们建筑物的太阳能的数量、类型和方向,我们就能大规模地减少我们要求加热器、冷却器和灯所做的工作。"这篇论文最近发表在PNAS杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1342381.htm手机版:https://m.cnbeta.com.tw/view/1342381.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人