研究人员在感知气味的神经元内发现了一种以前未知的细胞成分

研究人员在感知气味的神经元内发现了一种以前未知的细胞成分在电子显微镜放大镜下,带有转导蛋白的囊泡的释放分子生物学系教授斯塔凡-博姆(StaffanBohm)说:"找到治疗嗅觉受损的方法的前提是首先了解嗅觉如何工作。"研究人员所发现的是神经细胞内的一个所谓的细胞器,这在以前是没有被观察到的。新发现的细胞器被研究人员命名为"多泡转导体",这一发现要归功于于默奥大学独特的显微镜基础设施。DevendraKumarMaurya研究人员DevendraKumarMaurya使用了一种被称为相关显微镜的新技术,该技术结合了电子显微镜和共焦显微镜,这样就可以对细胞的内部结构和不同蛋白质的位置进行成像。细胞器是细胞内独特的"工作站",可与人体的不同器官相比较,即不同的细胞器在细胞内有不同的功能。大多数细胞器在不同的细胞类型中是通用的,但也有一些细胞器具有特定的功能,只出现在某些细胞类型中。嗅觉神经细胞有长长的突起,即纤毛,突入鼻腔,含有结合气味物质的蛋白质,从而启动神经脉冲到大脑。将气味转化为神经脉冲的过程被称为转导,新发现的细胞器只包含转导蛋白。斯塔凡-博姆,于默奥大学分子生物学系教授转导体的作用是既储存又保持转导蛋白相互分离,直到它们被需要。当嗅觉受到刺激时,该细胞器的外膜破裂,释放出转导蛋白,以便它们能够到达神经元的纤毛,从而感知到气味。研究人员还发现,转导体携带一种叫做视网膜色素变性2号的蛋白质,即RP2,它在其他方面被称为调节眼睛感光细胞的转导。如果RP2基因发生突变,就会导致眼睛疾病视网膜色素变性的一个变种,损害眼睛的光敏细胞。"需要进一步研究的一个问题是,转导体是否在视觉中发挥作用,以及它是否存在于由神经递质而非光和气味激活的大脑神经元中。如果是这样,这一发现可能会被证明更加重要,"斯塔凡-博姆说。当研究人员DevendraKumarMaurya使用一种叫做相关显微镜的新技术时,发现了转导体。该技术结合了电子显微镜和共焦显微镜,因此可以同时对细胞的内部结构和不同蛋白质的位置进行成像。对这一发现至关重要的是Devendra的方法开发,它使该技术能够被用于分析组织切片中的完整神经元。...PC版:https://www.cnbeta.com.tw/articles/soft/1343173.htm手机版:https://m.cnbeta.com.tw/view/1343173.htm

相关推荐

封面图片

研究人员揭开神经元更新过程中脑细胞有效替换旧蛋白质的秘密

研究人员揭开神经元更新过程中脑细胞有效替换旧蛋白质的秘密神经元内部类似工厂流水线的艺术表现:破旧的蛋白球被更新、充满活力的蛋白球取代和升级。资料来源:奥本大学物理系这项题为"RecentlyRecycledSynapticVesiclesUseMulti-CytoskeletalTransportandDifferentialPresynapticCaptureProbabilitytoEstablishaRetrogradeNetFluxDuringISVEinCentralNeurons"的研究解释了脑细胞中老蛋白的运输和再循环。奥本大学物理学助理教授MichaelW.Gramlich博士解释说:"大脑中的细胞会定期更换老化蛋白质,以保持高效思维。然而,老蛋白如何被定向运输到需要回收的地方,其确切机制直到现在仍是一个悬而未决的问题。我们的研究表明,有一种特定的途径可以调节老蛋白如何被运送到细胞体,并在那里被回收,从而让新蛋白取而代之。"这一发现对了解大脑健康有着深远的影响。如果没有有效的蛋白质替代,大脑中的神经元就会随着时间的推移而退化,效率也会降低。格拉姆利希博士补充说:"我们的工作揭示了一种可调节的途径,这种途径可以调节,以适应大脑功能的增减。这可以防止神经元随着时间的推移而退化。"研究人员综合利用了荧光显微镜、海马细胞培养和计算分析等技术,确定了介导老突触囊泡贩运回细胞体的机制。这项研究由研究生梅森-帕克斯(MasonParkes)和本科生内森-兰德斯(NathanLanders)合作完成。令人印象深刻的是,作为一名本科生,内森-兰德斯进行了高级计算编程,这对理解这项研究的结果至关重要。"我们惊讶地发现,一个简单而可调节的机制决定了老蛋白何时被选择回收,"格拉姆里奇博士强调了他们研究成果的重要性。奥本大学的研究团队对他们的研究成果在进一步了解大脑健康和神经退行性疾病方面的潜在应用感到非常兴奋。他们的开创性工作证明了该机构正在进行的创新研究。...PC版:https://www.cnbeta.com.tw/articles/soft/1396335.htm手机版:https://m.cnbeta.com.tw/view/1396335.htm

封面图片

研究人员开发出大视场高速超分辨率显微镜

研究人员开发出大视场高速超分辨率显微镜研究人员开发了一种荧光显微镜,利用结构照明在宽视场范围内进行快速超分辨率成像。它还可用于多色和高速成像。图片来源:比勒费尔德大学HenningOrtkrass德国比勒费尔德大学的亨宁-奥特克拉斯(HenningOrtkrass)说:"通常开给慢性病患者或老年人的多种药物组合的影响可能导致危险的相互作用,并正在成为一个主要问题。我们开发的这款显微镜是EICPathfinderOpenProjectDeLIVERy项目的一部分,该项目旨在开发一个平台,用于研究个体患者的多重用药情况。"研究人员使用新的显微镜装置对固定的多色染色肝细胞进行成像。图像显示了细胞的微小膜结构,这些结构小于光的衍射极限。图片来源:比勒费尔德大学HenningOrtkrass在Optica出版集团的《光学快报》(OpticsExpress)杂志上,研究人员介绍了他们的新型显微镜,该显微镜利用光纤传输激发光,在非常大的视野范围内实现了非常高的图像质量,并具有多色和高速功能。研究表明,该仪器可用于肝细胞成像,视场可达150x150μm²,成像速率高达44Hz,同时保持小于100nm的时空分辨率。Ortkrass说:"使用这种新型显微镜,可以在离体细胞上测试单个药物组合,然后进行超分辨率成像,观察细胞膜特征或细胞器的动态变化。大视场可以提供有关细胞反应的统计信息,这些信息可用于改善个性化医疗保健。由于该系统的潜在尺寸较小,它还可用于高分辨率非常重要的临床应用。"新型荧光显微镜采用结构照明,可在宽视场范围内快速进行超分辨率成像。还可以进行多色成像,如视频所示。图片来源:比勒费尔德大学HenningOrtkrass这种新型显微镜基于超分辨结构照明显微镜(SR-SIM),利用结构化的光模式激发样品中的荧光,实现超越光衍射极限的空间分辨率。SR-SIM特别适合活细胞成像,因为它使用低功耗激发,不会伤害样本,同时还能生成高度精细的图像。为了实现宽视场的高分辨率,新型显微镜从一组原始图像中重建超分辨图像。这些原始图像是通过使用一组六根光纤,以正弦条纹图案照射样品获得的。这样,分辨率提高了两倍,同时还能实现快速成像,并与活细胞成像兼容。得益于显微镜的大视野,可以同时获取多个细胞的超分辨率图像。图片来源:HenningOrtkrass,比勒费尔德大学Ortkrass说:"光纤选择和相移是通过基于振镜和MEMS镜的全新设计的光纤开关实现的。为此我们还定制设计了一个六边形支架,可将六根光纤的光束准直并重新聚焦到显微镜中,以照亮一个大的FOV并对所有光束进行精确调整。这使得该装置可用于全内反射荧光激发(TIRF)-SIM,从而将荧光激发和检测限制在样品的薄区域内。"由于肝脏是参与药物代谢的主要器官,研究人员使用固定的多色染色大鼠肝细胞样本对该装置进行了测试。利用新型显微镜生成的重建图像可以观察到小于光衍射极限的微小膜结构。Ortkrass说:"这种紧凑型系统独特地将大视野、快速图案切换速度与多色、高能效激发结合在一起。此外,该装置还能获得极高的图像质量,并可进行调整,以执行2D-SIM或TIRF-SIM。"下一步,研究人员计划将该显微镜装置应用于肝细胞的活细胞研究,以观察接受多种药物治疗的细胞的动态变化。他们还计划改进图像重建过程,以完成对获取的原始数据进行实时重建。...PC版:https://www.cnbeta.com.tw/articles/soft/1382739.htm手机版:https://m.cnbeta.com.tw/view/1382739.htm

封面图片

研究:单个细胞比科学家们以前认为的更聪明

研究:单个细胞比科学家们以前认为的更聪明每天,人类都在为自己做出选择。为了确保做出的决定适合当时的情况,这些决定往往需要结合一系列的环境线索。我们的感官为我们提供了做决定所需的大量知识。它们收集了我们周围环境的某些细节,如视觉和听觉信息,我们的大脑将其结合起来,建立一个整体的感知。这被称为多感官或多模态感知。在这方面,单个细胞与人类没有什么不同。它们不断地做出关键的决定,例如是否分裂。因此,苏黎世大学(UZH)的研究人员将在人类中发现的情境、多模态感知的概念扩展到单个细胞。令人惊讶的是,科学家们发现,单细胞做出的决定比之前想象的要自主得多。LucasPelkmans说:“单个细胞的充分决策使用了多模态感知,使细胞能够将外部信号(如生长因子)与来自细胞内部的信息(如细胞器的数量)相结合。”Pelkmans是UZH分子生命科学系的一名教授。有时,这种内部线索会推翻外部刺激:例如在肿瘤中,特定细胞的实际状态会推翻抗增殖药物的治疗,从而使其产生抗药性。“这种抗药性是抗击癌症的一个主要问题。”Pelkmans说:“解决方案可能来自于考虑到单个细胞所经历的环境线索,并最终改变它们。”为了测试细胞是否像人类一样根据上下文、多模态感知做出决定,科学家们必须同时测量多个信号节点的活动--细胞的外部传感器--以及细胞内部的几个潜在线索,如当地环境和细胞器的数量。一切都必须在单细胞和数百万个细胞中进行分析。“为了做到这一点,我们使用了'4i',一种在UZH开发的方法,它允许我们使用荧光显微镜同时对单细胞中多达80种不同的蛋白质和蛋白质修饰进行可视化和量化,”该研究的第一作者BernhardKramer说。研究人员发现,各细胞中单个传感器活动的变化与内部线索的变化密切相关。例如,线粒体的丰度,即细胞的动力站,从根本上影响了单个细胞对外部刺激的感知。此外,每个传感器都会整合来自细胞内部的不同线索。当研究人员评估一个单细胞的重要决定时--即在增长刺激下增殖或保持静止--他们发现,细胞的选择是由多个传感器的感知介导的,并可预测地受到细胞内部状态的线索的调节。“对于一个细胞的任何具体决定,所有外部信号和内部线索都必须被一致看待。单个细胞因此能够做出充分的依赖环境的决定--因此显然比以前认为的更聪明,”博士候选人Kramer说。PC版:https://www.cnbeta.com/articles/soft/1311907.htm手机版:https://m.cnbeta.com/view/1311907.htm

封面图片

将大脑免疫细胞转化为神经元有助于中风后的康复

将大脑免疫细胞转化为神经元有助于中风后的康复中风或其他脑血管疾病导致脑部血流不畅后,神经元要么受损,要么死亡,造成特有的生理和心理缺陷。现在,日本九州大学的研究人员将大脑的主要免疫细胞小胶质细胞转化为神经元,从而恢复了受中风影响的小鼠的运动功能。该研究的通讯作者中岛健一说:"当我们被割伤或骨折时,我们的皮肤和骨骼细胞可以复制,从而治愈我们的身体。但我们大脑中的神经元却不容易再生,因此损伤往往是永久性的。因此,我们需要找到新的方法来安置失去的神经元。"研究人员从之前的研究中得知,在健康小鼠的大脑中,小胶质细胞可以被诱导发育成神经元。中风后,负责清除受损或死亡脑细胞的小胶质细胞向受伤部位移动并迅速复制。该研究的第一作者入江隆说:"小胶质细胞数量丰富,而且正好位于我们需要它们的地方,因此它们是理想的转化目标。"研究人员通过暂时阻断右侧大脑中动脉诱导小鼠中风,大脑中动脉是大脑中的主要血管,通常与人类中风有关。一周后,研究人员观察到小鼠的运动功能出现障碍,纹状体中的神经元明显减少,而纹状体是大脑中参与决策、行动规划和运动控制的区域。他们使用慢病毒--一种用作病毒载体的亚类逆转录病毒--将DNA插入中风损伤部位的小胶质细胞。DNA中含有产生NeuroD1的指令,NeuroD1是一种诱导神经元转换的蛋白质。在随后的几周里,这些细胞发育成了神经元。在小胶质细胞中产生NeuroD1蛋白可诱导它们发育成神经元(红色),减少神经元缺失区域(暗斑)。DNA植入三周后,小鼠的运动功能得到改善。到八周时,新诱导的神经元已成功融入大脑回路。当研究人员移除新神经元时,运动功能的改善消失了,这证实了新神经元对小鼠的康复做出了直接贡献。中岛说:"这些结果很有希望。下一步是测试NeuroD1是否也能有效地将人类小胶质细胞转化为神经元,并确认我们将基因插入小胶质细胞的方法是安全的。"由于小鼠是在中风后的急性期接受治疗的,此时小胶质细胞已经迁移到损伤部位,因此研究人员下一步计划观察他们是否能在后期阶段让小鼠产生康复效果。该研究发表在《美国国家科学院院刊》(PNAS)上。...PC版:https://www.cnbeta.com.tw/articles/soft/1391667.htm手机版:https://m.cnbeta.com.tw/view/1391667.htm

封面图片

新型二合一显微镜可详细观察细胞内部结构

新型二合一显微镜可详细观察细胞内部结构如今,科学家们已经能够使用功能强大的显微镜窥视细胞内部。要了解特定生物分子是如何作用和反应的,这一点非常重要。然而,这些工具也有一些缺点。以超分辨率荧光显微镜(SRM)为例。它非常适合追踪细胞中的单个分子(如蛋白质),但不能向科学家展示附近发生了什么。此外,虽然低温电子断层扫描(cryo-ET)可以获得高分辨率的细胞图像,但它无法精确定位单个分子在做什么。因此,美国能源部斯坦福线性加速器中心(SLAC)国家加速器实验室的研究人员着手将这两种成像技术结合到一台显微镜中。研究报告的第一作者彼得-达尔伯格(PeterDahlberg)说:"我们的目标是保持两种技术的优点。保留了荧光显微镜的分子特异性,所以你知道谁是谁,然后可以把它放在低温电子显微镜的高分辨率结构中。"荧光显微镜技术是用一种较小的分子标记单个分子,这种分子在光线照射下会发光。然后就可以在普通的--尽管分辨率非常高--光学显微镜下追踪该分子。低温电子显微镜使用电子显微镜来研究细胞等速冻样本。将这两种技术相结合后,研究人员立即遇到了需要克服的问题。首先,必须将含有荧光标记分子的细胞投放到直径仅为3毫米的低温电子显微镜网格上,然后快速冷冻,使网格上的水变成玻璃(玻璃化)。一旦冻结,细胞就必须保持冻结状态。第二个问题是冷冻细胞的大小--它们有数千纳米厚--但冷冻CT使用的电子无法穿透200纳米以下的深度。因此,研究人员开发了一种名为"聚焦离子束铣削系统"的设备,该设备附带扫描电子显微镜(FIB-SEM)。聚焦离子束会切割掉细胞材料,留下冷冻ET可以穿透的极薄的冷冻细胞片。然后,扫描电子显微镜向样品发射电子,生成高分辨率图像。原型FIB-SEM有一个问题:它没有连接光学显微镜,这意味着必须移动冷冻-ET网格才能进行荧光显微镜检查。幸运的是,解决方法很简单。Dahlberg说:"从根本上说,我们只是拆开了这台价值150万美元的精密仪器,安装了这个集成的光学显微镜,现在我们有了一个更好的系统。"研究人员在2020年测试了FIB-SEM,追踪细菌细胞内的蛋白质,发现它可以工作,但意识到冷冻ET网格的材料会吸收光线,破坏冷冻样本。因此,他们进行了一些调整,设计了更好的网格,并为光学显微镜制作了更好的平台。现在,研究人员正在设计不同种类的荧光标签--生物传感器--以便在低温条件下工作。生物传感器是一种荧光分子,能根据当地环境改变其发射或激发特性,在一种环境中发出一种颜色,而在另一种环境中则发出不同的颜色。Dahlberg说:"它们可以被调整为对pH值、适应数百种环境变量。因此,除了具体位置和高分辨率结构信息外,你还可以知道我的细胞是健康的还是生病的?即将进行细胞分裂?ATP浓度高吗?它提供了所有这些额外的内容。"研究人员将继续修补FIB-SEM,直到它得到优化并充分发挥其潜力。...PC版:https://www.cnbeta.com.tw/articles/soft/1389293.htm手机版:https://m.cnbeta.com.tw/view/1389293.htm

封面图片

科学家用最先进的成像技术揭开细胞结构的神秘面纱

科学家用最先进的成像技术揭开细胞结构的神秘面纱沿纵轴切开并从上方观察的人类中心粒模型。图片来源:©CentrioleLab这种细胞器对细胞骨架的组织至关重要,在功能障碍的情况下与某些癌症、脑部疾病或视网膜疾病有关。这项发表在《细胞》(Cell)杂志上的研究成果阐明了中心粒组装的复杂性。它还为研究其他细胞器开辟了许多新途径。细胞器的形成是按照连续的蛋白质招募事件的精确序列进行的。通过实时观察这种组装过程,可以更好地了解这些蛋白质在细胞器结构或功能中的作用。然而,要获得具有足够分辨率的视频序列来分辨如此复杂的显微元件,却面临着许多技术限制。为更好地观察细胞而充气中心粒尤其如此,这个尺寸不到500纳米(千分之五毫米)的细胞器由大约100种不同的蛋白质组成,分为六个亚结构域。直到几年前,人们还无法看到中心粒结构的细节。联合国大学理学院分子和细胞生物学系联合研究主任保罗-吉夏尔(PaulGuichard)和维吉妮-哈梅尔(VirginieHamel)的实验室利用膨胀显微镜技术改变了这一局面。这项尖端技术可以使细胞及其成分在不变形的情况下逐渐膨胀,这样就可以使用传统显微镜以极高的分辨率对它们进行观察。以如此高的分辨率获取中心粒图像可以确定蛋白质在特定时间的确切位置,但却无法提供关于亚结构域或单个蛋白质出现顺序的信息。该研究的第一作者、前联合国工程师学会研究和教学人员MarineLaporte利用膨胀显微镜分析了一千多个中心粒在不同生长阶段的六个结构域中24种蛋白质的位置。重组图片,让它们运转起来"在这项非常繁琐的工作之后,我们进行了伪时间运动学重建。换句话说,我们能够将中心粒生物发生过程中随机拍摄的数千张图像按时间顺序排列起来,利用我们开发的计算机分析方法重建中心粒亚结构形成的各个阶段,"这项研究的共同负责人维吉妮-哈梅尔解释说。这种独特的方法结合了极高分辨率的膨胀显微镜和运动学重建,使我们能够首次建立人类中心粒的4D组装模型。保罗-吉夏尔总结说:"我们的工作不仅加深了我们对中心粒形成的理解,还为细胞和分子生物学开辟了令人难以置信的前景,因为这种方法可以应用于其他大分子和细胞结构,研究它们在空间和时间维度上的组装。"编译自/scitechdaily...PC版:https://www.cnbeta.com.tw/articles/soft/1427550.htm手机版:https://m.cnbeta.com.tw/view/1427550.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人