将大脑免疫细胞转化为神经元有助于中风后的康复

将大脑免疫细胞转化为神经元有助于中风后的康复中风或其他脑血管疾病导致脑部血流不畅后,神经元要么受损,要么死亡,造成特有的生理和心理缺陷。现在,日本九州大学的研究人员将大脑的主要免疫细胞小胶质细胞转化为神经元,从而恢复了受中风影响的小鼠的运动功能。该研究的通讯作者中岛健一说:"当我们被割伤或骨折时,我们的皮肤和骨骼细胞可以复制,从而治愈我们的身体。但我们大脑中的神经元却不容易再生,因此损伤往往是永久性的。因此,我们需要找到新的方法来安置失去的神经元。"研究人员从之前的研究中得知,在健康小鼠的大脑中,小胶质细胞可以被诱导发育成神经元。中风后,负责清除受损或死亡脑细胞的小胶质细胞向受伤部位移动并迅速复制。该研究的第一作者入江隆说:"小胶质细胞数量丰富,而且正好位于我们需要它们的地方,因此它们是理想的转化目标。"研究人员通过暂时阻断右侧大脑中动脉诱导小鼠中风,大脑中动脉是大脑中的主要血管,通常与人类中风有关。一周后,研究人员观察到小鼠的运动功能出现障碍,纹状体中的神经元明显减少,而纹状体是大脑中参与决策、行动规划和运动控制的区域。他们使用慢病毒--一种用作病毒载体的亚类逆转录病毒--将DNA插入中风损伤部位的小胶质细胞。DNA中含有产生NeuroD1的指令,NeuroD1是一种诱导神经元转换的蛋白质。在随后的几周里,这些细胞发育成了神经元。在小胶质细胞中产生NeuroD1蛋白可诱导它们发育成神经元(红色),减少神经元缺失区域(暗斑)。DNA植入三周后,小鼠的运动功能得到改善。到八周时,新诱导的神经元已成功融入大脑回路。当研究人员移除新神经元时,运动功能的改善消失了,这证实了新神经元对小鼠的康复做出了直接贡献。中岛说:"这些结果很有希望。下一步是测试NeuroD1是否也能有效地将人类小胶质细胞转化为神经元,并确认我们将基因插入小胶质细胞的方法是安全的。"由于小鼠是在中风后的急性期接受治疗的,此时小胶质细胞已经迁移到损伤部位,因此研究人员下一步计划观察他们是否能在后期阶段让小鼠产生康复效果。该研究发表在《美国国家科学院院刊》(PNAS)上。...PC版:https://www.cnbeta.com.tw/articles/soft/1391667.htm手机版:https://m.cnbeta.com.tw/view/1391667.htm

相关推荐

封面图片

糖影响大脑"可塑性" 有助于学习、记忆和恢复

糖影响大脑"可塑性"有助于学习、记忆和恢复复杂的糖分子控制着神经元周围网(图中绿色)的形成,这些网环绕着神经元,帮助稳定大脑中的连接。资料来源:LindaHsieh-Wilson实验室研究人员于8月16日在美国化学学会(ACS)秋季会议上展示了他们的研究成果。美国化学学会2023年秋季会议将于8月13-17日以虚拟和现场相结合的方式举行,大约有12000个关于各种科学主题的报告。复合糖和大脑可塑性给水果、糖果或蛋糕增添甜味的糖实际上只是多种糖类中的几个简单品种。当它们串联在一起时,就能形成各种各样的复合糖。GAG是通过连接其他化学结构(包括硫酸基团)而形成的。"如果我们研究大脑中GAGs的化学结构,就能了解大脑的可塑性,并希望将来能利用这些信息恢复或增强记忆中的神经连接,"在会议上介绍这项研究的项目首席研究员琳达-谢-威尔逊(LindaHsieh-Wilson)博士说。她解释说:"这些糖能调节许多蛋白质,它们的结构在发育过程中和疾病发生时会发生变化。"谢-威尔逊现就职于加州理工学院(Caltech)。在大脑中,最常见的GAG形式是硫酸软骨素,它存在于大脑许多细胞周围的细胞外基质中。硫酸软骨素还能形成被称为"神经元周围网"的结构,这种结构包裹着单个神经元,并稳定它们之间的突触连接。硫酸化模式及其影响改变GAG功能的一种方法是硫酸化图案,即糖链上的硫酸基团模式。谢-威尔逊的团队对这些硫酸化模式如何发生改变,以及它们可能如何调控神经可塑性和社会记忆等生物过程很感兴趣。有朝一日,研究人员也可以通过调节这些功能来治疗中枢神经系统损伤、神经退行性疾病或精神疾病。当研究小组删除了小鼠体内负责形成硫酸软骨素两种主要硫酸化模式的Chst11基因后,小鼠的神经元周围网出现了缺陷。然而,在没有硫酸化图案的情况下,神经元网络的数量实际上增加了,从而改变了神经元之间突触连接的类型。此外,这些小鼠无法辨认出它们以前接触过的小鼠,这表明这些模式会影响社会记忆。记忆和治疗的潜力有趣的是,这些网络可能比以前认为的更具活力--它们可能在儿童期和成年期都发挥着作用。当研究人员在成年小鼠的大脑中特异性地靶向Chst11时,他们发现它对神经周细胞网和社会记忆产生了同样的影响。谢-威尔逊说:"这一结果表明,有可能在青春期或成年期操纵这些网络,从而有可能重新连接或加强某些突触连接。"在最近的其他实验中,研究小组希望了解GAGs及其硫酸化模式如何影响轴突再生,或神经元在损伤后的自我重建能力。研究人员目前正在努力确定能与特定硫酸化图案结合的蛋白质受体。到目前为止,他们已经发现,特定基团会导致这些受体在细胞表面聚集在一起,抑制再生。阻断这一过程可以创造出促进轴突再生的工具或治疗方法。Hsieh-Wilson说,对这一过程有更深入的了解有朝一日可以帮助修复某些神经退行性疾病或中风造成的损伤。...PC版:https://www.cnbeta.com.tw/articles/soft/1377789.htm手机版:https://m.cnbeta.com.tw/view/1377789.htm

封面图片

港大医学院研发转化脑神经干细胞 有助治疗衰老疾病

#港闻【Now新闻台】港大医学院研发快捷方法,将血液和皮肤细胞转化为脑神经干细胞,治疗衰老疾病。要获取位于大脑深处的神经元作研究十分困难,港大医学院团队成功将不同年龄小鼠的皮肤细胞,转化为具有脑内细胞特征的脑神经干细胞,进一步改良诱导方法应用于人类细胞,并成功将来自人类捐赠者的血细胞诱导为脑神经干细胞。这些脑神经干细胞有助研究和治疗衰老相关疾病,例如阿兹海默症、柏金逊症及渐冻人症等,团队下一步会研究将老年人血细胞产生脑神经细胞。

封面图片

研究人员制造出混合大脑:让一个物种的神经元帮助另一个物种

研究人员制造出混合大脑:让一个物种的神经元帮助另一个物种大鼠(红色)和小鼠(绿色)神经元的混合体在混合大脑中形成了环形气味处理中心什么是混合大脑?听起来像是科幻电影情节中的东西--或者是史蒂夫-马丁主演的80年代古怪喜剧--但它实际上是两个物种细胞的结合,发育成一个完整的功能性大脑。因此,杂交脑通过创建"合成"神经回路来恢复受损或退化大脑的功能,对于推动再生神经科学的发展非常重要。在哥伦比亚大学欧文医学中心研究人员领导的一项新研究中,大鼠干细胞在发育初期就被引入到小鼠细胞中,从而产生了利用整合的大鼠细胞嗅觉的小鼠大脑。哥伦比亚大学瓦格罗斯内外科医学院遗传学和发育学教授、该研究的共同通讯作者克里斯汀-鲍德温(KristinBaldwin)说:"我们拥有漂亮的培养皿细胞模型和称为器官组织的三维培养物,它们都有各自的优点。但它们都无法让你确定细胞是否真正发挥了最高水平的功能。这项研究开始向我们展示,我们如何扩大大脑的灵活性,使其能够容纳来自人机界面或移植干细胞的其他类型的输入。"大鼠-小鼠嵌合体的制作示意图Throesch等人研究人员将大鼠胚胎干细胞植入小鼠胚泡(受精卵分裂而成的细胞团),然后将胚泡移植到代孕小鼠妈妈的子宫内发育。尽管在进化过程中存在差异(大鼠大脑发育较慢,体积较大),但研究人员观察到,大鼠细胞与小鼠神经元同步生长。在成熟的大鼠-小鼠或嵌合体中,大鼠细胞整合成整个小鼠大脑的神经回路,并与小鼠神经元形成活跃的连接。鲍德温说:"几乎在整个小鼠大脑中都能看到大鼠细胞,这让我们相当惊讶。它告诉我们,插入的障碍很少,这表明许多种小鼠神经元都可以被类似的大鼠神经元取代。"接下来是测试大鼠细胞的功能能力,以及它们是否能取代受损的小鼠神经元。研究人员开发了小鼠模型,这些小鼠的嗅觉神经元(OSNs)在基因上有缺陷或被消融,即被破坏,而嗅觉神经元是检测和传递气味信息的神经元。他们发现,大鼠细胞拯救了小鼠大脑。鲍德温说:"我们在每个小鼠笼子里都藏了一块饼干,结果非常惊讶地发现,它们能通过大鼠神经元找到饼干。"然而,与OSN被破坏的小鼠相比,OSN被基因沉默(即神经元存在,只是不工作)的小鼠找到饼干的成功率较低。这表明,增加替代神经元并非"即插即用"。如果想获得功能性替代神经元,可能需要清空闲置在那里的功能障碍神经元,这可能是某些神经退行性疾病的情况,也可能是自闭症和精神分裂症等神经发育障碍的情况。研究人员在研究中遇到的一个问题是,大鼠细胞随机分布在不同的小鼠体内,这阻碍了他们将研究扩展到其他神经系统。目前,他们正试图找到驱动插入细胞发育成特定细胞类型的方法,这可能会提供更高的精确度。扫清这一障碍将为创造具有灵长类神经元的混合大脑铺平道路,这将帮助我们更接近了解人类疾病。这项研究发表在《细胞》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1428726.htm手机版:https://m.cnbeta.com.tw/view/1428726.htm

封面图片

科学家发现成人大脑中生成新的神经元的原理

科学家发现成人大脑中生成新的神经元的原理齿状回(大脑颞叶海马结构的一部分)中新产生的神经元(红色)与细胞核(蓝色)和未成熟神经元的标记物(绿色)。资料来源:Knobloch实验室-UNIL成年大脑的一些区域含有静止的或休眠的神经干细胞,它们有可能被重新激活以形成新的神经元。然而,人们对从静止状态到增殖的过渡仍然知之甚少。由日内瓦大学(UNIGE)和洛桑大学(UNIL)的科学家领导的一个团队发现了细胞代谢在这一过程中的重要性,并确定了如何唤醒这些神经干细胞并重新激活它们。生物学家们成功地增加了成年甚至老年小鼠大脑中新神经元的数量。这些结果对治疗神经退行性疾病很有希望,将在《科学进展》杂志上发现。这种生物现象被称为成人神经生成,对学习和记忆过程等特定功能非常重要。然而,在成人大脑中,这些干细胞变得更加沉默或''休眠'',并降低了它们的更新和分化能力。因此,随着年龄的增长,神经发生明显减少。日内瓦大学理学院分子和细胞生物学系名誉教授让-克劳德-马蒂努(Jean-ClaudeMartinou)和生物和医学系生物医学科学副教授马伦-克诺布洛赫(MarlenKnobloch)的实验室发现了一种代谢机制,成年NSCs可以从其休眠状态出现并变得活跃。"我们发现线粒体--细胞内产生能量的细胞器--参与调节成年NSCs的激活水平,"UNIL的研究员FrancescoPetrelli和ValentinaScanDELLa,这项研究的共同第一作者表示。线粒体丙酮酸转运体(MPC)是Martinou教授小组11年前发现的一种蛋白质复合物,在这种调节中发挥着特殊作用。它的活性影响着细胞可以使用的代谢选择。通过了解区分活跃细胞和休眠细胞的代谢途径,科学家可以通过改变线粒体代谢来唤醒休眠细胞。现在,生物学家已经通过使用化学抑制剂或通过生成Mpc1基因的突变小鼠来阻断MPC的活性。利用这些药理学和遗传学方法,科学家们能够激活休眠的NSCs,从而在成年甚至老年小鼠的大脑中产生新的神经元。通过这项研究工作表明,代谢途径的重定向能够直接影响成年NSCs的活动状态,从而影响新神经元的生成数量,该研究的共同第一作者Knobloch教授总结说。"这些结果为细胞代谢在调节神经发生方面的作用提供了新的启示。从长远来看,这些结果可能会带来对抑郁症或神经退行性疾病等疾病的潜在治疗方案。"该研究的共同主要作者Jean-ClaudeMartinou总结道。...PC版:https://www.cnbeta.com.tw/articles/soft/1348035.htm手机版:https://m.cnbeta.com.tw/view/1348035.htm

封面图片

研究:促进神经元的形成可以帮助恢复阿尔茨海默病的记忆

研究:促进神经元的形成可以帮助恢复阿尔茨海默病的记忆科学家们发现,在患有阿尔茨海默病(AD)的小鼠中增加新神经元的生产可以挽救动物的记忆缺陷。该研究显示,新神经元能够融入存储记忆的神经回路并恢复其正常功能。这表明,促进神经元的产生可能是治疗AD患者的可行策略。新神经元是由神经干细胞通过一个被称为神经发生的过程产生。以前的研究表明,AD患者和携带跟AD有关的基因突变的实验室小鼠的神经发生都受到损害。这种损害在大脑中一个叫做海马体的区域尤为严重,该区域对记忆的获取和检索至关重要。伊利诺伊大学芝加哥医学院解剖学和细胞生物学系的OrlyLazarov教授说道:“然而,新形成的神经元在记忆形成中的作用及神经生成的缺陷是否导致与AD相关的认知障碍目前还不清楚。”在新JEM研究中,Lazarov和他的同事们通过基因增强神经元干细胞的生存以促进AD小鼠的神经生成。科学家们删除了在神经元干细胞死亡中起主要作用的基因Bax并最终导致了更多新神经元的成熟。以这种方式增加新神经元的产生恢复了动物的认知能力,这在测量空间识别和背景记忆的两种不同测试中得到了证明。通过荧光标记在记忆获取和检索过程中激活的神经元,科学家们发现,在健康小鼠的大脑中,参与存储记忆的神经回路包括许多新形成的神经元和较老、较成熟的神经元。在AD小鼠中,这些储存记忆的回路包含较少的新神经元,但当神经发生增加时,新形成的神经元的整合得到了恢复。对形成记忆储存回路的神经元的进一步分析显示,促进神经发生也会增加树突棘的数量。这些是突触中的结构,已知对记忆的形成至关重要。此外,促进神经生成还能恢复神经元基因的正常表达模式。Lazarov及其同事证实了新形成的神经元对记忆形成的重要性,他们在AD小鼠的大脑中特意使其失活。这逆转了促进神经生成的好处并阻止了动物记忆的任何改善。Lazarov说道:“我们的研究首次表明,海马神经发生的障碍通过减少用于记忆形成的未成熟神经元的可用性,在跟AD相关的记忆缺陷中发挥了作用。综合来看,我们的结果表明,增强神经生成可能对AD患者有治疗价值。”...PC版:https://www.cnbeta.com/articles/soft/1309715.htm手机版:https://m.cnbeta.com/view/1309715.htm

封面图片

章鱼胺:大脑的SOS信号在神经退行性中起关键作用

章鱼胺:大脑的SOS信号在神经退行性中起关键作用研究人员揭示了章鱼胺(一种在无脊椎动物中的主要神经递质,在哺乳动物中少量存在)如何与哺乳动物大脑中的细胞相互作用以防止细胞死亡。科学家们发现,当在小鼠大脑皮层的星形胶质细胞培养物中引入一定水平的章鱼胺时,它会触发乳酸的产生,从而促进细胞的生存。这些发现至关重要,因为它们揭示了章鱼酰胺在哺乳动物大脑中的功能,它被比喻为一种SOS信号,促使星形胶质细胞产生能量以防止细胞因ATP短缺而死亡。这一发现可能有助于开发治疗阿尔茨海默病、帕金森病和双相情感障碍等疾病的方法,这些疾病都与辛胺水平失衡有关。资料来源:西北大学尽管在哺乳动物的大脑中仍有微量的章鱼胺,但其功能已被肾上腺素所取代。长期以来,人们认为它是哺乳动物进化过程中的遗留物,但此前人们对章鱼胺在人脑中的作用并不十分了解。在目前的研究中,研究人员首先着手了解占人类中枢神经系统大多数细胞的星形胶质细胞是如何在神经退行性疾病中造成大脑功能障碍的。在来自小鼠大脑皮层的星形胶质细胞培养物中,科学家们发现,引入一定水平的章鱼胺促使星形胶质细胞产生乳酸,促进细胞的生存。KenandRuthDavee神经学部运动障碍科助理教授GabrielaCaraveoPiso博士说:"我们的发现非常重要,因为我们发现了这种微量胺--章鱼胺在哺乳动物大脑中运作的方式。我们可以把它想象成一个SOS信号;受压的神经元向星形胶质细胞发出这个信号,向它们输送能量,输送乳酸。在适当的水平上,章鱼胺允许星形胶质细胞读取这个求救信号并开始制造能量,这将保护细胞不因缺乏ATP而死亡。如果有太多的章鱼胺,那就有点像烟雾阻碍了SOS的方式。它不能被星形胶质细胞所读取"。CaraveoPiso说,这些发现可能有助于为未来治疗阿尔茨海默病、帕金森病和躁郁症提供信息,所有这些疾病都与大脑中的章鱼胺水平失调有关。"长期以来,乳酸被认为是一种废物。但事实证明,它不是,它是一种非常重要的燃料,神经元需要将其转化为更高形式的能量,"CaraveoPiso说。"我们认为这很重要,因为这可能会影响到章鱼酰胺水平改变的其他疾病,包括阿尔茨海默病和精神障碍。"展望未来,Piso和她的合作者希望能更好地了解章鱼胺在健康大脑中的运作方式。"我们现在想知道的是:这是否只发生在类似疾病的条件下?或者说,在学习和记忆等生理条件下,章鱼胺是否发挥作用,在这些条件下,神经元也会经历高能量需求?"CaraveoPiso说。"鉴于章鱼胺可以驾驭星形胶质细胞的乳酸代谢,我们也有兴趣了解在记忆和学习以及衰老这种情况下,乳酸代谢在大脑中的作用。"...PC版:https://www.cnbeta.com.tw/articles/soft/1357665.htm手机版:https://m.cnbeta.com.tw/view/1357665.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人