TAE首次实现读取磁约束氢硼核聚变的数据

TAE首次实现读取磁约束氢硼核聚变的数据该装置被设计为维持3000万°C(5400万°F)的等离子体,但它已经突破了7500万°C(1.35亿°F)。今天,TAE正在庆祝在备受尊敬的《自然-通讯》杂志上发表了一篇经同行评审的论文,团队记录了世界上首次对磁约束等离子体中的氢硼聚变的测量。这句话高度具体是有原因的;作者指出,H-B核聚变已经在激光产生的等离子体和粒子加速器中通过束靶聚变进行了测量。但是这些环境并不能告诉TAE关于H-B核聚变及其产物在磁约束等离子体中如何表现和扩散,就像他们将在反应堆中使用的那些。日本国家聚变科学研究所的大型螺旋装置--一个大型超导恒星仪NIFS这些实验是作为与日本国家聚变科学研究所(NIFS)合作的一部分进行的,该研究所拥有世界上最大的超导等离子体约束装置和世界上第二大的恒星仪:大型螺旋装置,或LHD。它不是专门为追求氢硼核聚变而设计的,但该项目利用了LHD已经具有向等离子体中注入硼或氮化硼的系统这一事实。一般来说,注入硼是为了调节安全壳的壁,清除杂质,减少湍流,改善等离子体的封闭性,并提高等离子体的电子密度--但该团队意识到,硼也积累在等离子体的中间,其密度足以使高能质子射入等离子体时产生可测量的氢硼聚变。因此,TAE组装了一个系统,基于钝化植入式平面硅(PIPS)探测器,以检测LHD室中H-B核聚变产生的α粒子(或氦核)。果然,当硼注射和高能质子束同时开启时,PIPS机器检测到了超过150倍的α粒子脉冲。实验装置中的高能质子击中硼粉粒子TAE技术公司首席执行官MichlBinderbauer说:"这项实验为我们提供了大量的数据,并表明氢硼在公用事业规模的聚变发电中占有一席之地。我们知道,我们可以解决手头的物理挑战,并向世界提供一种变革性的无碳能源新形式,这种能源依赖于这种无放射性的丰富燃料。"这种性质的研究将继续进行,希望能找到增加核聚变收益的方法,以及其他方面。而且,TAE将继续迭代自己的设备,计划在"十年中期"推出"哥白尼"反应堆,TAE预计该反应堆将能够获得比运行所需更多的能量。到2030年代初,该公司预计其"达芬奇"机器将启动和运行,它说这将是世界上第一个H-B核聚变发电厂原型,与电网连接并提供电力。该论文在《自然通讯》杂志上公开发表。...PC版:https://www.cnbeta.com.tw/articles/soft/1347117.htm手机版:https://m.cnbeta.com.tw/view/1347117.htm

相关推荐

封面图片

中核集团:中国掌握可控核聚变高约束先进控制技术

中核集团:中国掌握可控核聚变高约束先进控制技术8月25日下午,新一代人造太阳“中国环流三号”取得重大科研进展,首次实现100万安培等离子体电流下的高约束模式运行,再次刷新我国磁约束聚变装置运行纪录,突破了等离子体大电流高约束模式运行控制、高功率加热系统注入耦合、先进偏滤器位形控制等关键技术难题,是我国核聚变能开发进程中的重要里程碑,标志着我国磁约束核聚变研究向高性能聚变等离子体运行迈出重要一步。 为实现聚变能源,需要提升等离子体综合参数至聚变点火条件。磁约束核聚变中的高约束模式(H模)是一种典型的先进运行模式,被选为正在建造的国际热核聚变试验堆(ITER)的标准运行模式,能够有效提升等离子体整体约束性能,提升未来聚变堆的经济性,相较于普通的运行模式,其等离子体综合参数可提升数倍。——

封面图片

中核集团:重大突破!我国掌握可控核聚变高约束先进控制技术

中核集团:重大突破!我国掌握可控核聚变高约束先进控制技术据中核集团消息,8月25日下午,新一代人造太阳“中国环流三号”取得重大科研进展,首次实现100万安培等离子体电流下的高约束模式运行,再次刷新我国磁约束聚变装置运行纪录,突破了等离子体大电流高约束模式运行控制、高功率加热系统注入耦合、先进偏滤器位形控制等关键技术难题,是我国核聚变能开发进程中的重要里程碑,标志着我国磁约束核聚变研究向高性能聚变等离子体运行迈出重要一步。投稿:@ZaiHuaBot频道:@TestFlightCN

封面图片

中国掌握可控核聚变高约束先进控制技术

中国掌握可控核聚变高约束先进控制技术中核集团宣布新一代人造太阳“中国环流三号”取得重大科研进展,首次实现100万安培等离子体电流下的高约束模式运行,再次刷新我国磁约束聚变装置运行纪录,突破了等离子体大电流高约束模式运行控制、高功率加热系统注入耦合、先进偏滤器位形控制等关键技术难题,是我国核聚变能开发进程中的重要里程碑,标志着我国磁约束核聚变研究向高性能聚变等离子体运行迈出重要一步。可控核聚变是目前认识到的能够最终解决人类能源问题的重要途径之一,具有原料充足、经济性能优异、安全可靠、无环境污染等优势,主要的方式有3种:引力约束、惯性约束和磁约束。2022年12月5日,美国劳伦斯利佛摩国家实验室(LLNL)首次实现能量净收益的可控核聚变。该实验通过192道激光聚焦目标提供2.05兆焦耳的能量,从而超过聚变阈值,产生3.15兆焦耳的聚变能量输出。频道:@kejiqu群组:@kejiquchat投稿:@kejiqubot

封面图片

研究人员找到控制一亿度核聚变等离子体热量的方法

研究人员找到控制一亿度核聚变等离子体热量的方法京都大学的研究人员建立了一个模型,用于预测和控制聚变反应堆中氢分子的旋转温度。这一发现有助于冷却等离子体和优化聚变装置的性能,为未来聚变发电的进步提供了启示。托卡马克--甜甜圈形核聚变反应堆中封闭的极高温等离子体通常高达1亿摄氏度,会对这些巨型装置的封闭壁造成损坏。研究人员在装置壁附近注入氢气和惰性气体,通过辐射和重组冷却等离子体,这与电离作用正好相反。减轻热负荷对于延长未来聚变装置的使用寿命至关重要。了解和预测氢分子在器壁附近的振动和旋转温度过程可以增强重组,但有效的策略仍然难以捉摸。在三个不同的托卡马克中测量了从面向等离子体表面解吸的氢分子的旋转温度;还评估了等离子体中碰撞辐射过程导致的温度升高。图片来源:KyotoUGlobalComms/TaiichiShikama京都大学领导的一个国际研究小组最近找到了一种方法,可以解释在日本和美国的三个不同实验聚变装置中测得的旋转温度。他们的模型评估了氢分子的表面相互作用和电子-质子碰撞。模型的通讯作者、京都大学工学研究院的NaoYoneda补充说:"在我们的模型中,我们针对低能级的旋转温度进行了评估,使我们能够解释几个实验装置的测量结果。"通过预测和控制壁面附近的旋转温度,研究小组能够驱散等离子体热通量并优化装置的工作条件。"我们仍然需要了解氢的旋转振动激发机制,"Yoneda说,"但我们很高兴,我们模型的多功能性也使我们能够再现文献中报告的测量旋转温度。"...PC版:https://www.cnbeta.com.tw/articles/soft/1379355.htm手机版:https://m.cnbeta.com.tw/view/1379355.htm

封面图片

中核集团称掌握可控核聚变高约束先进控制技术

中核集团称掌握可控核聚变高约束先进控制技术中国核工业集团有限公司称,已掌握可控核聚变高约束先进控制技术。据澎湃新闻报道,星期五(8月25日)下午,新一代人造太阳“中国环流三号”取得重大科研进展,首次实现100万安培等离子体电流下的高约束模式运行,再次刷新中国磁约束聚变装置运行纪录。中核集团称,这是中国核聚变能开发进程中的重要里程碑,标志着磁约束核聚变研究向高性能聚变等离子体运行迈出重要一步。中核集团称,可控核聚变作为面向国家重大需求的前沿颠覆性技术,具有资源丰富、环境友好、固有安全等突出优势,是目前认识到的能够最终解决人类能源问题的重要途径之一,对中国经济社会发展、国防工业建设具有重要战略意义。

封面图片

世界最大核聚变发电装置 ITER 已经组装完成 但首次等离子体产生将推迟八年

世界最大核聚变发电装置ITER已经组装完成但首次等离子体产生将推迟八年由35个国家共同发起、旨在利用核聚变生产电力的国际热核聚变实验反应堆(ITER)项目宣布,其已经完成了核心的托卡马克装置组装,但其首次运行时间将推迟至少八年。ITER总干事PietroBarabaschi昨天概述了一个新的项目基线(),以取代2016年的版本。旧文件预计2025年将产出“第一团等离子体”,现在这个时间点已经推迟到了2033年。而原计划中2033年将开始进行的“氘氚聚变”实验则推迟到了2039年。与此同时,该项目将需要额外的54亿美元才能实现运行。——

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人