罗曼空间望远镜将让NASA拥有回看宇宙时间线的能力

罗曼空间望远镜将让NASA拥有回看宇宙时间线的能力据位于马里兰州格林贝尔特的美国宇航局戈达德太空飞行中心的博士后AaronYung说,韦伯和哈勃的设计是通过非常精选的维度来观察宇宙。不过,有了罗曼,美国宇航局计划以一种更大的方式来观察宇宙。该航天局认为这将使其能够倒转宇宙,并更好地了解事物过去的情况。罗曼太空望远镜目前定于2027年的某个时候发射。虽然我们在它投入使用之前还有几年时间,但美国宇航局已经开始对它的能力进行模拟。这意味着,我们终于能够在同一幅图像中看到更多的宇宙了。根据美国宇航局分享的模拟图像,罗曼将真正让天文学家一次看到成千上万的星系。然后,这些数据可以与来自韦伯和哈勃的数据结合起来,进一步回溯我们宇宙的特定部分,以便我们可以看到它在过去的样子。一组研究人员在12月发表了一篇论文,描述了模拟的结果,该论文可在《皇家天文学会月刊》上阅读:https://academic.oup.com/mnras/article-abstract/519/1/1578/6884144...PC版:https://www.cnbeta.com.tw/articles/soft/1347493.htm手机版:https://m.cnbeta.com.tw/view/1347493.htm

相关推荐

封面图片

罗曼望远镜的强大能力将带来测量宇宙膨胀率的新维度

罗曼望远镜的强大能力将带来测量宇宙膨胀率的新维度这幅哈勃太空望远镜拍摄的图像显示,一个星系嵌入一个巨大的星系团中,其强大的引力产生了其背后遥远的一颗超新星的多幅图像。图像显示了该星系在一个名为MACSJ1149.6+2223的大型星系团中的位置,距离超过50亿光年。在该星系的放大插图中,箭头指向爆炸恒星的多幅图像,该恒星被命名为雷夫斯达尔超新星,距离地球93亿光年。资料来源:NASA、ESA、SteveA.Rodney(JHU)、TommasoTreu(UCLA)、PatrickKelly(UCBerkeley)、JenniferLotz(STScI)、MarcPostman(STScI)、ZoltG.Levay(STScI)、FrontierSN小组、GLASS小组、HFF小组(STScI)、CLASH小组。其中一个团队特别注重训练罗曼寻找引力透镜超新星,这种天体可以用于测量宇宙膨胀率的独特方法。他们说,罗曼对这些难以捉摸的透镜超新星的研究对宇宙学的未来有着巨大的潜力。美国国家航空航天局(NASA)的南希-格蕾丝-罗曼太空望远镜是为了纪念NASA的第一位首席天文学家而命名的,它代表着我们在探索了解宇宙的道路上的一次飞跃。这个尖端天文台计划于2027年5月发射,旨在探索暗能量的奥秘、研究系外行星,并以前所未有的清晰度揭示宇宙的膨胀速度。罗曼太空望远镜利用先进的技术对宇宙进行大范围、细致的观测,将为我们提供对宇宙的重要见解,增强我们对宇宙组成、结构和演化的了解。资料来源:美国国家航空航天局戈达德太空飞行中心天文学家正在研究宇宙中最紧迫的谜团之一--宇宙膨胀的速度--他们正准备利用美国国家航空航天局的南希-格蕾丝-罗曼太空望远镜(NancyGraceRomanSpaceTelescope),以一种新的方式研究这个谜团。一旦罗曼望远镜于2027年5月发射升空,天文学家们将在罗曼望远镜的大范围图像中寻找引力透镜状超新星,这些超新星可以用来测量宇宙的膨胀速度。天文学家有多种独立的方法来测量宇宙目前的膨胀率,即哈勃常数。不同的技术得出不同的值,称为哈勃张力。罗曼的大部分宇宙学研究都将针对难以捉摸的暗能量,因为暗能量会影响宇宙随时间的膨胀。这些研究的一个主要工具是一种相当传统的方法,它将Ia型超新星等天体的固有亮度与其感知亮度进行比较,从而确定距离。另外,天文学家也可以使用罗曼法来研究重力透镜超新星。这种探索哈勃常数的方法与传统方法不同,因为它基于几何方法,而不是亮度。这幅插图利用哈勃太空望远镜拍摄的雷夫斯达尔超新星图像,展示了大质量星系团MACSJ1149.6+2223的引力是如何弯曲并聚焦来自其背后的超新星的光线,从而产生爆炸恒星的多幅图像的。这种现象被称为引力透镜。引力透镜超新星为天文学家提供了一种计算哈勃常数--宇宙加速的速率--的独特方法。一个研究小组正准备利用美国宇航局即将于2027年5月发射的南希-格蕾丝-罗曼太空望远镜,让天文学家发现并研究这些罕见的天体。上图显示,当恒星爆炸时,它的光线穿过太空,遇到前景星系团。如果没有星系团,天文学家将只能探测到直射地球的超新星光线,并且只能看到超新星的单一图像。然而,在超新星多重成像的情况下,光路会被星系团的引力弯曲,并重新定向到新的光路上,其中有几条光路是指向地球的。因此,天文学家可以看到爆炸恒星的多幅图像,每幅图像都对应着其中一条改变的光路。每幅图像穿过星团的路线不同,到达地球的时间也不同,部分原因是光线到达地球的路径长度不同。精确测量多幅图像之间到达时间的差异,就可以得出一个距离组合,从而限制哈勃常数。在下图中,重定向光线穿过星团中的一个巨大椭圆星系。这个星系又增加了一层透镜作用,再一次改变了原本会错过我们的几条光路的方向,并将它们聚焦,使它们能够到达地球。资料来源:NASA、ESA、AnnFeild(STSCI)、JosephDePasquale(STSCI)、NASA、ESA、SteveA.Rodney(JHU)、TommasoTreu(UCLA)、PatrickKelly(UCBerkeley)、JenniferLotz(STSCI)、MarcPostman(STSCI)、ZoltG.Levay(STSCI)、FrontierSN小组、GLASS小组、HFF小组(STSCI)、CLASH小组。引力透镜的前景位于巴尔的摩的空间望远镜科学研究所(STScI)的卢·斯特罗格是准备对罗曼望远镜进行研究的团队的共同负责人,他说:"罗曼是让引力透镜超新星研究起飞的理想工具。这些天体非常罕见,而且很难发现。我们不得不靠运气才能及早发现其中的几个。罗曼的大视野和高分辨率重复成像将有助于提高这些机会"。天文学家利用各种天文台,如美国宇航局的哈勃太空望远镜和詹姆斯-韦伯太空望远镜,在宇宙中发现了八颗引力透镜状超新星。然而,由于超新星的类型及其延时成像的持续时间,这八个超新星中只有两个是测量哈勃常数的可行候选者。当来自恒星爆炸等天体的光线在飞往地球的途中穿过星系或星系团,并被巨大的引力场偏转时,就会发生引力透镜现象。光线沿着不同的路径分裂,在天空中形成我们看到的超新星的多个图像。根据不同路径之间的差异,超新星图像会出现几小时到几个月,甚至几年的延迟。精确测量多幅图像之间到达时间的差异,就能得出距离组合,从而限制哈勃常数。罗曼望远镜的广泛勘测将能够以比哈勃更快的速度绘制宇宙地图,它在单幅图像中"看到"的面积是哈勃的100多倍。特别是,高纬度时域巡天将重复观测同一天空区域,这将使天文学家能够研究随时间变化的目标。这意味着将有大量的数据--每次超过50亿像素--需要进行筛选,以发现这些非常罕见的事件。斯特罗格是该计划的共同负责人,他是STScI的贾斯汀-皮埃尔(JustinPierel)。他解释说:"这台新望远镜将使我们能够在一张快照中看到整个森林,而不是收集几张树木的照片。"由斯特罗格和皮埃尔领导的STScI小组正在通过美国宇航局太空和地球科学研究机会(ROSES)南希-格蕾丝-罗曼太空望远镜研究和支持参与机会计划资助的一个项目,为在罗曼数据中发现引力透镜超新星奠定基础。皮埃尔说:"由于这些超新星非常罕见,要充分利用引力透镜超新星的潜力,就必须做好充分准备。我们希望提前准备好寻找这些超新星的所有工具,这样当数据到来时,我们就不用浪费任何时间来筛选数以兆字节计的数据了"。该项目将由美国国家航空航天局(NASA)各中心和全国各大学的研究人员组成的团队实施。准备工作将分几个阶段进行。研究小组将创建数据还原管道,用于在罗曼成像中自动检测引力透镜超新星。为了训练这些管道,研究人员还将创建模拟成像:需要50000个模拟透镜,而目前已知的实际透镜只有10000个。斯特罗格和皮埃尔团队创建的数据缩减管道将补充正在创建的管道,以便利用Ia型超新星研究暗能量。"罗曼望远镜确实是创建黄金标准引力透镜超新星样本的第一次机会,"斯特罗格总结道。"我们现在的所有准备工作都将产生所需的所有成分,以确保我们能够有效地利用宇宙学的巨大潜力"。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1419661.htm手机版:https://m.cnbeta.com.tw/view/1419661.htm

封面图片

NASA罗曼太空望远镜如何探测绚丽的千新星爆炸?

NASA罗曼太空望远镜如何探测绚丽的千新星爆炸?在整个宇宙中,有多少像这样的辉煌喷发?我们还不知道。到目前为止,只有少数几个千新星被探测到。美国宇航局即将推出的南希·格雷斯·罗曼太空望远镜将每隔几天对天空中的相同区域进行勘测,这将有助于研究人员跟进探测,甚至准确定位千新星的。理想情况下,这将掀起一场关于这一神秘的宇宙现象的新信息的"淘金热"。罗曼太空望远镜是美国宇航局的一个观测站,旨在揭开暗能量和暗物质的秘密,搜索和成像系外行星,并探索红外天体物理学的许多课题。资料来源:美国国家航空航天局罗曼望远镜如何扫描引人注目的爆炸当密度最大、质量最大的恒星--也是超级小的恒星--相互碰撞或与黑洞碰撞时会发生什么?它们会发出灿烂的爆炸,被称为千新星。可以把这些事件看作是宇宙的天然烟火。理论家们怀疑它们会定期出现在整个宇宙中,无论是近处还是远处。科学家们很快就会有一个额外的观测站来帮助跟踪甚至侦察这些非凡的事件。美国宇航局的南希-格雷斯-罗曼太空望远镜,它预计将于2027年5月发射。在千新星中,关键的角色是中子星,即在超新星爆炸过程中在重力作用下坍缩的恒星的中心核心。它们每个都有类似于太阳的质量,但直径只有大约6英里(10公里),它们的密度大得惊人。当它们碰撞时,它们发出的碎片以接近光速的速度移动。这些爆炸也被认为可以锻造重元素,如金、铂和锶(这使得实际产生的"烟花"具有惊人的红色)。这些元素射向太空,有可能使它们最终进入形成地球等陆地行星地壳的岩石中。美国宇航局的罗曼太空望远镜将如何探测千新星?部分优势是由于该望远镜的宽阔视野。罗曼的视野比哈勃太空望远镜的红外视野大200倍。一旦罗曼在发射后开始定期观测天空,计划在2027年之前,研究人员期望能够识别更多的这些壮观的事件,包括附近和非常遥远的地方。尽管我们还不知道这些事件的发生率,但当Roman的数据涌入时,我们将开始了解这些合并的频率--以及结果如何。资料来源:NASA,AlyssaPagan(STSCI)天文界在2017年捕捉到了这些非凡的千新星事件中的一个。美国国家科学基金会激光干涉仪引力波观测站(LIGO)的科学家们首先用引力波--时空的涟漪--探测到了两颗中子星的碰撞。几乎同时,美国宇航局的费米伽马射线太空望远镜探测到了高能光。美国宇航局迅速转向,用更广泛的望远镜群来观察这一事件,并在一系列图像中捕捉到了爆炸后不断扩大的碎片所发出的消逝的光芒。但是这个例子中的参与者实际上是在我们的"后院"相撞的,至少在天文方面是这样。它们只在1.3亿光年之外。一定有更多的千新星--以及许多更远的千新星--点缀在我们不断活动的宇宙中。北卡罗来纳州达勒姆的杜克大学物理学助理教授丹尼尔-M-斯科尔尼奇说:"我们还不知道这些事件的速率。Scolnic领导的一项研究估计了过去、现在和未来包括Roman在内的观测站可能发现的千禧年新星的数量。我们确定的单颗千里眼是典型的吗?这些爆炸的亮度如何?它们发生在什么类型的星系中?现有的望远镜不能覆盖足够广泛的区域,也不能深入观察,以发现更多的遥远的例子,但这将随着罗曼的出现而改变。"发现更多、更遥远的千新星在这个阶段,LIGO在识别中子星合并方面处于领先地位。它可以探测到天空中所有区域的引力波,但一些最遥远的碰撞可能太弱而无法被识别。罗曼将加入LIGO的搜索,提供互补性,帮助"填充"发现团队。罗曼是一种巡天望远镜,它将反复扫描天空的相同区域。此外,Roman的视野比哈勃太空望远镜的红外视野大200倍--虽然没有LIGO那么大,但对于一个拍摄图像的望远镜来说是巨大的,它的节奏将使研究人员能够发现天空中的物体何时变亮或变暗,无论是在附近还是非常遥远的地方。罗曼将为研究人员提供一个强大的工具来观察极远的千新星。这是由于空间的扩张。数十亿年前离开恒星的光线随着时间的推移被拉伸成更长、更红的波长,也就是所谓的红外光。由于罗曼擅长捕捉近红外光,它将探测到来自非常遥远的物体的光。它们有多远?位于新墨西哥州洛斯阿拉莫斯的洛斯阿拉莫斯国家实验室的博士后研究员EveChase解释说:"Roman将能够看到一些千新星,其光线经过了大约70亿年才到达地球。Chase领导了一项最近的研究,该研究模拟了千新星抛射物的差异会如何改变我们从包括罗曼在内的天文台观察到的情况。"近红外光还有一个好处:它提供了更多的时间来观察这些短命的爆发。较短波长的光,如紫外线和可见光在一两天内就会从视野中消失。近红外光可以收集一个星期或更长时间。研究人员一直在模拟数据,看看这将如何运作。"对于模拟的千新星的一个子集,罗曼将能够在中子星合并发生后的两个多星期内观测到一些,"Chase补充说。"它将是观察非常遥远的千新星的绝佳工具。"很快,研究人员就会知道更多关于千新星发生的地点,以及这些爆炸在宇宙历史上发生的频率。那些更早发生的是否在某些方面有所不同?Scolnic说:"Roman将使天文学界开始进行群体研究,同时对这些爆炸的物理学进行一系列新的分析。"巡天望远镜提供了巨大的可能性--同时也提供了大量的数据,需要精确的机器学习。天文学家们正在通过编写代码来应对这一挑战,使这些搜索自动化。最终,罗曼的海量数据集将帮助研究人员揭开也许是迄今为止关于千新星的最大谜团:两颗中子星碰撞后会发生什么?它是产生一颗中子星、一个黑洞,还是其他完全不同的东西?有了罗曼,我们将收集研究人员需要的统计数据,以取得实质性的突破。...PC版:https://www.cnbeta.com.tw/articles/soft/1332415.htm手机版:https://m.cnbeta.com.tw/view/1332415.htm

封面图片

NASA罗曼太空望远镜的高增益通信天线通过了极端环境测试

NASA罗曼太空望远镜的高增益通信天线通过了极端环境测试下图是在一个测试室中,该天线将为罗曼航天器和地面之间提供主要的通信连接。它将是迄今为止美国宇航局天体物理学任务中数据量最大的下行链路。南希-格雷斯-罗曼太空望远镜的高增益天线在马里兰州格林贝尔特的NASA戈达德太空飞行中心进行测试。资料来源:美国宇航局/克里斯-冈恩天线反射器由碳纤维复合材料制成,重量很小,但仍能承受航天器的广泛温度波动。该盘直径跨度为5.6英尺(1.7米),与冰箱差不多高,但只重24磅(10.9公斤)。它的大尺寸将帮助罗曼将无线电信号穿过一百万英里的间隔空间发送到地球。在一个频率上,双频天线将接收指令,并发回有关航天器健康和位置的信息。它将使用另一个频率向新墨西哥州、澳大利亚和日本的地面站传输每秒高达500兆比特的数据。这些地点分散开来,因此罗曼团队将始终能够与航天器沟通。这个信息图展示了南希-格雷斯-罗曼、韦伯和哈勃太空望远镜之间数据量的差异。每天,罗曼向地球发送的数据将是哈勃的500多倍。资料来源:美国宇航局戈达德太空飞行中心生产这种天线是政府和商业部门之间的协调努力,NASA负责无线电频率设计和馈电组件的制造。一个商业伙伴,位于加利福尼亚斯托克顿的应用航空结构公司(AASC)负责最后的飞行机械设计和复合反射器和支柱组件的制造,完成的天线装置于12月交付给美国宇航局。AASC和戈达德的工程师对它进行了广泛的测试,以确认它将在太空的极端环境中如期运行,它将经历零下26至284华氏度(零下32至140摄氏度)的温度范围。该团队还对天线进行了振动测试,以确保它能承受航天器的发射,工程师们在一个射频消声测试室中测量了天线的性能。测试室的每一个表面都覆盖着金字塔形的泡沫片,以减少测试期间的干扰性反射。接下来,该团队将把天线安装到铰接式吊杆组件上,然后将其与罗曼的射频通信系统进行电气整合。...PC版:https://www.cnbeta.com.tw/articles/soft/1345563.htm手机版:https://m.cnbeta.com.tw/view/1345563.htm

封面图片

NASA为罗曼太空望远镜设计45英里长的"神经系统"

NASA为罗曼太空望远镜设计45英里长的"神经系统"南希-格蕾丝-罗曼太空望远镜是美国国家航空航天局(NASA)的一个观测站,旨在研究暗能量、系外行星和红外天体物理学。罗曼望远镜拥有一个2.4米长的主镜(与哈勃太空望远镜的主镜大小相似),其视场将比哈勃大100多倍,从而能够更全面地捕捉宇宙的全貌,更深入地探索宇宙的奥秘。资料来源:美国宇航局戈达德太空飞行中心美国国家航空航天局的南希-格雷斯-罗曼太空望远镜团队已经开始整合和测试航天器的电缆或线束,这使得天文台的不同部分能够相互通信。此外,线束还提供电源,并帮助中央计算机通过一系列传感器监控观测站的功能。这使得该任务在2027年5月发射后,距离勘测数十亿个宇宙天体和解开暗能量等谜团更近了一步。南希-格蕾丝-罗曼太空望远镜的飞行线束从模拟结构转移到航天器飞行结构上。图片来源:NASA/ChrisGunn位于马里兰州格林贝尔特的美国宇航局戈达德太空飞行中心的罗曼线束项目开发负责人德尼恩-费罗(DeneenFerro)说:"就像神经系统在整个人体中传递信号一样,罗曼的线束连接着它的各个组件,为每个电子盒和仪器提供电源和指令。没有线束,就没有航天器。"座袋规格和结构线束重约1,000磅,由大约32,000根电线和900个连接器组成。如果将这些电线端对端铺开,它们的跨度将达到45英里。如果向上延伸,它们的高度将是珠穆朗玛峰峰顶的八倍。这段视频展示了南希-格蕾丝-罗曼太空望远镜的线束从模型转移到飞行结构的过程。资料来源:美国国家航空航天局戈达德太空飞行中心实现这一里程碑并非易事。在大约两年的时间里,由11名戈达德技术人员组成的团队在工作台前和梯子上花费了大量时间,剪切电线的长度,仔细清洁每个部件,并反复将所有部件连接在一起。为太空条件做准备整个线束是在一个天文台模拟结构上制作的,然后被运到戈达德的太空环境模拟器上--这是一个用于"烘烤"的巨大热真空室。像"罗曼"这样的天文台被送上太空后,产生的真空和轨道温度会导致某些材料释放出有害蒸汽,这些蒸汽会在电子设备中凝结,造成短路或敏感光学元件沉积等问题,从而降低望远镜的性能。Bakeout会在地球上释放这些气体,这样在太空中就不会在航天器内释放这些气体。延时摄影:线束在定制的运输篮上从模拟主结构吊到飞行结构。图片来源:美国宇航局戈达德太空飞行中心最后组装阶段现在,工程师们将在戈达德的大洁净室里把线束编织到飞行结构中。这个持续的过程将一直持续到大部分航天器部件组装完毕。与此同时,戈达德团队将很快开始安装电子设备箱,这些设备箱最终将通过线束为飞船上的所有科学仪器供电。...PC版:https://www.cnbeta.com.tw/articles/soft/1379799.htm手机版:https://m.cnbeta.com.tw/view/1379799.htm

封面图片

NASA韦伯望远镜被授予迈克尔-柯林斯奖杯

NASA韦伯望远镜被授予迈克尔-柯林斯奖杯"詹姆斯-韦伯太空望远镜团队的奉献精神和聪明才智是对世界的一种激励,"美国宇航局副局长鲍勃-卡巴纳说。"使这项任务成为可能的伙伴关系代表了人类的精华,对于使我们能够利用韦伯更好地了解我们的宇宙至关重要"。该奖项于3月23日在弗吉尼亚州尚蒂伊的博物馆史蒂芬-F-乌德瓦-哈兹中心举行的仪式上颁发。"2023年柯林斯奖杯获得者帮助人类了解他们在这个地球上的位置,"博物馆的约翰和阿德里安娜-马斯主任克里斯-布朗说。"詹姆斯-韦伯望远镜同样给了我们关于宇宙的新视角。"詹姆斯-韦伯太空望远镜。资料来源:美国宇航局戈达德太空飞行中心概念图像实验室韦伯于2021年12月25日发射,是有史以来最大和最强大的空间科学望远镜。2022年7月,韦伯团队正式开始韦伯探索红外宇宙的任务。"祝贺詹姆斯-韦伯太空望远镜团队突破极限,通过宇宙中最早、最遥远的星系来揭示我们的历史,"美国宇航局总部科学任务局副局长尼古拉-福克斯说。"令人敬畏的图像和光谱已经实现了韦伯的承诺,开启了科学的新时代"。由于其光学系统的性能几乎是任务要求的两倍,韦伯正在发现一些有史以来最早被观测到的星系,透过尘埃云层观察恒星的形成,并提供一个比以往更详细的太阳系外行星的大气层的视图。韦伯还捕捉到了我们太阳系内行星的新景象,包括几十年来对海王星环最清晰的观察。柯林斯奖表彰了设计、开发和现在运营韦伯任务的团队成员所取得的非凡成就和重大贡献。在詹姆斯-韦伯太空望远镜结合韦伯近红外相机和中红外仪器发出的近红外和中红外波长的光的合成图像中,发光的热星Wolf-Rayet124(WR124)在中心位置很突出。资料来源:NASA,ESA,CSA,STScI,WebbERO制作团队"詹姆斯-韦伯太空望远镜使我们能够研究宇宙中第一批恒星和星系形成的时间。这一惊人的成就是在团队中数千人多年来的努力下取得的,他们推动了技术的发展,以提供这一壮观的太空望远镜,"美国宇航局总部科学任务局天体物理部主任MarkClampin说。Clampin在3月23日接受2023年柯林斯奖杯后,代表韦伯团队发表了讲话。获奖者收到的奖杯上有一个微型版的"空间之网"雕塑,该雕塑由来自华盛顿特区的约翰-萨弗尔创作。该奖项设立于1985年,2020年为纪念阿波罗11号宇航员迈克尔-柯林斯而重新命名。韦伯是美国宇航局与其合作伙伴欧空局(EuropeanSpaceAgency)和加空局(CanadianSpaceAgency)领导的一项国际任务,是世界上最重要的空间科学观测站。它的设计推动了空间望远镜能力的极限,以解决我们太阳系中的奥秘,展望其他恒星周围的遥远世界,并探测我们宇宙的神秘结构和起源以及我们在其中的位置。最近,韦伯任务的成就也得到了包括太空基金会、科学、国家太空俱乐部和基金会、航空周刊、彭博商业周刊、大众科学和时代周刊等组织的认可。...PC版:https://www.cnbeta.com.tw/articles/soft/1351115.htm手机版:https://m.cnbeta.com.tw/view/1351115.htm

封面图片

NASA詹姆斯·韦伯望远镜在修复故障后准备进行土星观测

NASA詹姆斯·韦伯望远镜在修复故障后准备进行土星观测韦伯的MIRI仪器的问题源自对控制该工具如何在其不同观测模式之间切换的机制,这对任何未来的韦伯观测,如詹姆斯·韦伯的土星观测非常重要。虽然问题存在的同时仍然允许让韦伯的团队使用MIRI,然而,它限制了他们使用中分辨率光谱仪(MRS)。美国宇航局说,11月2日,它能够成功地展示在各种模式之间切换的机制的新操作参数。因此,这意味着该望远镜将最终能够恢复正常工作,观测遥远的星系和观察猎户座星云等标志性的恒星位置。这也意味着韦伯的土星观测也终于可以启动了。由哈勃成像的土星。图片来源/NASA,ESA,A.Simon(GoddardSpaceFlightCenter),M.H.Wong(UniversityofCalifornia,Berkeley),andtheOPALTeam随着MIRI恢复100%的运行,詹姆斯-韦伯团队有信心重返之前设定的科学任务。而这些任务将从仔细观察土星开始,土星是没有我们太阳系的主要行星之一。长期以来,土星一直是夜空中的一个标志,天空观察者经常蜂拥而至,想通过地球的大气层瞥见这个拥有华丽光环的美丽星球。但是,有了詹姆斯-韦伯,我们终于能够更深入地观察,超越哈勃在2021年看到的颜色变化。也许,我们甚至能够确认我们已经发现的关于该行星的事实。甚至可能从中学到全新的知识。美国宇航局还没有说我们应该在什么时候看到韦伯的土星观测数据,但根据韦伯的工作方式和周期,它应该在未来几个月内到来。...PC版:https://www.cnbeta.com.tw/articles/soft/1332351.htm手机版:https://m.cnbeta.com.tw/view/1332351.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人