罗曼望远镜的强大能力将带来测量宇宙膨胀率的新维度

罗曼望远镜的强大能力将带来测量宇宙膨胀率的新维度这幅哈勃太空望远镜拍摄的图像显示,一个星系嵌入一个巨大的星系团中,其强大的引力产生了其背后遥远的一颗超新星的多幅图像。图像显示了该星系在一个名为MACSJ1149.6+2223的大型星系团中的位置,距离超过50亿光年。在该星系的放大插图中,箭头指向爆炸恒星的多幅图像,该恒星被命名为雷夫斯达尔超新星,距离地球93亿光年。资料来源:NASA、ESA、SteveA.Rodney(JHU)、TommasoTreu(UCLA)、PatrickKelly(UCBerkeley)、JenniferLotz(STScI)、MarcPostman(STScI)、ZoltG.Levay(STScI)、FrontierSN小组、GLASS小组、HFF小组(STScI)、CLASH小组。其中一个团队特别注重训练罗曼寻找引力透镜超新星,这种天体可以用于测量宇宙膨胀率的独特方法。他们说,罗曼对这些难以捉摸的透镜超新星的研究对宇宙学的未来有着巨大的潜力。美国国家航空航天局(NASA)的南希-格蕾丝-罗曼太空望远镜是为了纪念NASA的第一位首席天文学家而命名的,它代表着我们在探索了解宇宙的道路上的一次飞跃。这个尖端天文台计划于2027年5月发射,旨在探索暗能量的奥秘、研究系外行星,并以前所未有的清晰度揭示宇宙的膨胀速度。罗曼太空望远镜利用先进的技术对宇宙进行大范围、细致的观测,将为我们提供对宇宙的重要见解,增强我们对宇宙组成、结构和演化的了解。资料来源:美国国家航空航天局戈达德太空飞行中心天文学家正在研究宇宙中最紧迫的谜团之一--宇宙膨胀的速度--他们正准备利用美国国家航空航天局的南希-格蕾丝-罗曼太空望远镜(NancyGraceRomanSpaceTelescope),以一种新的方式研究这个谜团。一旦罗曼望远镜于2027年5月发射升空,天文学家们将在罗曼望远镜的大范围图像中寻找引力透镜状超新星,这些超新星可以用来测量宇宙的膨胀速度。天文学家有多种独立的方法来测量宇宙目前的膨胀率,即哈勃常数。不同的技术得出不同的值,称为哈勃张力。罗曼的大部分宇宙学研究都将针对难以捉摸的暗能量,因为暗能量会影响宇宙随时间的膨胀。这些研究的一个主要工具是一种相当传统的方法,它将Ia型超新星等天体的固有亮度与其感知亮度进行比较,从而确定距离。另外,天文学家也可以使用罗曼法来研究重力透镜超新星。这种探索哈勃常数的方法与传统方法不同,因为它基于几何方法,而不是亮度。这幅插图利用哈勃太空望远镜拍摄的雷夫斯达尔超新星图像,展示了大质量星系团MACSJ1149.6+2223的引力是如何弯曲并聚焦来自其背后的超新星的光线,从而产生爆炸恒星的多幅图像的。这种现象被称为引力透镜。引力透镜超新星为天文学家提供了一种计算哈勃常数--宇宙加速的速率--的独特方法。一个研究小组正准备利用美国宇航局即将于2027年5月发射的南希-格蕾丝-罗曼太空望远镜,让天文学家发现并研究这些罕见的天体。上图显示,当恒星爆炸时,它的光线穿过太空,遇到前景星系团。如果没有星系团,天文学家将只能探测到直射地球的超新星光线,并且只能看到超新星的单一图像。然而,在超新星多重成像的情况下,光路会被星系团的引力弯曲,并重新定向到新的光路上,其中有几条光路是指向地球的。因此,天文学家可以看到爆炸恒星的多幅图像,每幅图像都对应着其中一条改变的光路。每幅图像穿过星团的路线不同,到达地球的时间也不同,部分原因是光线到达地球的路径长度不同。精确测量多幅图像之间到达时间的差异,就可以得出一个距离组合,从而限制哈勃常数。在下图中,重定向光线穿过星团中的一个巨大椭圆星系。这个星系又增加了一层透镜作用,再一次改变了原本会错过我们的几条光路的方向,并将它们聚焦,使它们能够到达地球。资料来源:NASA、ESA、AnnFeild(STSCI)、JosephDePasquale(STSCI)、NASA、ESA、SteveA.Rodney(JHU)、TommasoTreu(UCLA)、PatrickKelly(UCBerkeley)、JenniferLotz(STSCI)、MarcPostman(STSCI)、ZoltG.Levay(STSCI)、FrontierSN小组、GLASS小组、HFF小组(STSCI)、CLASH小组。引力透镜的前景位于巴尔的摩的空间望远镜科学研究所(STScI)的卢·斯特罗格是准备对罗曼望远镜进行研究的团队的共同负责人,他说:"罗曼是让引力透镜超新星研究起飞的理想工具。这些天体非常罕见,而且很难发现。我们不得不靠运气才能及早发现其中的几个。罗曼的大视野和高分辨率重复成像将有助于提高这些机会"。天文学家利用各种天文台,如美国宇航局的哈勃太空望远镜和詹姆斯-韦伯太空望远镜,在宇宙中发现了八颗引力透镜状超新星。然而,由于超新星的类型及其延时成像的持续时间,这八个超新星中只有两个是测量哈勃常数的可行候选者。当来自恒星爆炸等天体的光线在飞往地球的途中穿过星系或星系团,并被巨大的引力场偏转时,就会发生引力透镜现象。光线沿着不同的路径分裂,在天空中形成我们看到的超新星的多个图像。根据不同路径之间的差异,超新星图像会出现几小时到几个月,甚至几年的延迟。精确测量多幅图像之间到达时间的差异,就能得出距离组合,从而限制哈勃常数。罗曼望远镜的广泛勘测将能够以比哈勃更快的速度绘制宇宙地图,它在单幅图像中"看到"的面积是哈勃的100多倍。特别是,高纬度时域巡天将重复观测同一天空区域,这将使天文学家能够研究随时间变化的目标。这意味着将有大量的数据--每次超过50亿像素--需要进行筛选,以发现这些非常罕见的事件。斯特罗格是该计划的共同负责人,他是STScI的贾斯汀-皮埃尔(JustinPierel)。他解释说:"这台新望远镜将使我们能够在一张快照中看到整个森林,而不是收集几张树木的照片。"由斯特罗格和皮埃尔领导的STScI小组正在通过美国宇航局太空和地球科学研究机会(ROSES)南希-格蕾丝-罗曼太空望远镜研究和支持参与机会计划资助的一个项目,为在罗曼数据中发现引力透镜超新星奠定基础。皮埃尔说:"由于这些超新星非常罕见,要充分利用引力透镜超新星的潜力,就必须做好充分准备。我们希望提前准备好寻找这些超新星的所有工具,这样当数据到来时,我们就不用浪费任何时间来筛选数以兆字节计的数据了"。该项目将由美国国家航空航天局(NASA)各中心和全国各大学的研究人员组成的团队实施。准备工作将分几个阶段进行。研究小组将创建数据还原管道,用于在罗曼成像中自动检测引力透镜超新星。为了训练这些管道,研究人员还将创建模拟成像:需要50000个模拟透镜,而目前已知的实际透镜只有10000个。斯特罗格和皮埃尔团队创建的数据缩减管道将补充正在创建的管道,以便利用Ia型超新星研究暗能量。"罗曼望远镜确实是创建黄金标准引力透镜超新星样本的第一次机会,"斯特罗格总结道。"我们现在的所有准备工作都将产生所需的所有成分,以确保我们能够有效地利用宇宙学的巨大潜力"。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1419661.htm手机版:https://m.cnbeta.com.tw/view/1419661.htm

相关推荐

封面图片

韦伯望远镜让早期宇宙中的已发现超新星数量增加10倍

韦伯望远镜让早期宇宙中的已发现超新星数量增加10倍韦伯望远镜非常适合用来识别极其遥远的超新星,因为存在一种叫做宇宙学红移的现象,在这种现象中,穿越宇宙的光线会被拉伸到更长的波长。来自远古超新星的可见光被拉伸得如此之长,以至于最终出现在红外线中。韦伯望远镜的仪器可以看到红外光,因此非常适合寻找这些遥远的超新星。一个研究小组利用韦伯早期宇宙深度探测的数据,发现了比以前已知的多10倍的远古超新星。这项研究是利用韦伯望远镜对远古超新星进行更广泛探测的第一步。JADES深度场使用的是NASA詹姆斯-韦伯太空望远镜(JWST)的观测数据,这是JADES(JWST高级河外星系深度巡天)计划的一部分。一个研究JADES数据的天文学家小组发现了大约80个亮度随时间变化的天体(绿色圈内)。这些被称为瞬变天体的天体大多是恒星或超新星爆炸的结果。资料来源:NASA、ESA、CSA、STScI、JADES合作组织美国国家航空航天局(NASA)的詹姆斯-韦伯太空望远镜(JamesWebbSpaceTelescope)深入窥探宇宙,为科学家们首次提供了宇宙早期超新星的详细资料。一个使用韦伯数据的研究小组发现,早期宇宙中的超新星比之前已知的多10倍。其中一些新发现的爆炸恒星是同类恒星中最遥远的例子,包括那些用来测量宇宙膨胀率的恒星。"韦伯望远镜是一台发现超新星的机器,"图森市亚利桑那大学斯图尔特天文台的三年级研究生克里斯塔-德库西(ChristaDeCoursey)说。"探测到的超新星数量之多,加上这些超新星的距离之远,是我们巡天观测中最令人兴奋的两项成果"。德库西在威斯康星州麦迪逊举行的美国天文学会第244次会议的新闻发布会上介绍了这些发现。资料来源:NASA、ESA、CSA、AnnFeild(STScI)为了取得这些发现,研究小组分析了作为JWST高级深河外星系巡天(JADES)计划一部分而获得的成像数据。韦伯望远镜非常适合寻找极其遥远的超新星,因为它们的光线会被拉伸到更长的波长--这种现象被称为宇宙学红移。(见上图)。在韦伯望远镜发射之前,只有少数超新星的红移超过2,这相当于宇宙的年龄只有33亿年--仅为目前年龄的25%。JADES样本包含了许多在更久远的过去爆炸的超新星,当时宇宙的年龄还不到20亿年。以前,研究人员利用美国宇航局的哈勃太空望远镜观测宇宙处于"青年期"时的超新星。通过JADES,科学家们看到了宇宙处于"十几岁"或"前十几岁"时的超新星。未来,他们希望能够回望宇宙的"幼儿"或"婴儿"阶段。为了发现这些超新星,研究小组比较了相隔一年的多幅图像,寻找在这些图像中消失或出现的光源。这些观测亮度随时间变化的天体被称为瞬变体,而超新星就是瞬变体的一种。总之,JADES瞬变巡天样本小组在一片只有米粒粗细的天空中发现了大约80个超新星。这张马赛克照片展示了从JADES(JWST高级深河外星系巡天)计划的数据中发现的约80个瞬变天体(即亮度不断变化的天体)中的三个。大多数瞬变体都是恒星或超新星爆炸的结果。通过对比2022年和2023年拍摄的图像,天文学家可以找到从我们的视角来看最近才爆炸的超新星(如前两列所示的例子),或者已经爆炸但其光线正在逐渐消失的超新星(第三列)。每颗超新星的年龄都可以通过它的红移(用"z"表示)来确定。最遥远的超新星的红移为3.8,它的光起源于宇宙只有17亿年的时候。红移2.845相当于宇宙大爆炸后23亿年。最接近的例子红移为0.655,显示的是大约60亿年前离开其星系的光线,当时宇宙的年龄刚刚超过现在的一半。资料来源:NASA、ESA、CSA、STScI、ChristaDeCoursey(亚利桑那大学)、JADES合作组织位于马里兰州巴尔的摩市的太空望远镜科学研究所(STScI)的美国宇航局爱因斯坦研究员贾斯汀-皮埃尔(JustinPierel)说:"这确实是我们对高红移宇宙的瞬态科学的第一个样本。我们正试图确定遥远的超新星是否与我们在附近宇宙中看到的超新星有本质区别或非常相似。"皮埃尔和STScI的其他研究人员提供了专家分析,以确定哪些瞬变实际上是超新星,哪些不是,因为它们往往看起来非常相似。研究小组发现了一些高红移超新星,包括光谱学上确认的最远的一颗,红移为3.6。它的祖星在宇宙只有18亿岁时爆炸。这是一颗所谓的核心坍缩超新星,是一颗大质量恒星的爆炸。这段动画展示了白矮星爆炸的过程,白矮星是一颗恒星的残余物,密度极高,其核心已无法再燃烧核燃料。在这颗"Ia型"超新星中,白矮星的引力从附近的恒星伴星那里偷走了物质。当白矮星的质量估计达到目前太阳质量的1.4倍时,它再也无法承受自身的重量,于是爆炸了。资料来源:NASA/JPL-Caltech天体物理学家特别感兴趣的是Ia型超新星。(这些爆炸的恒星非常明亮,可以用来测量遥远的宇宙距离,帮助科学家计算宇宙的膨胀率。研究小组至少发现了一颗红移为2.9的Ia型超新星。这颗爆炸产生的光在115亿年前开始向我们传播,当时宇宙的年龄只有23亿年。此前经光谱学确认的Ia型超新星的距离记录是红移1.95,当时宇宙的年龄是34亿年。科学家们迫切希望分析高红移下的Ia型超新星,看看它们是否都具有相同的内在亮度,而与距离无关。这一点至关重要,因为如果它们的亮度随红移而变化,那么它们就不能成为测量宇宙膨胀率的可靠标记。Pierel分析了这颗发现于红移2.9的Ia型超新星,以确定其内在亮度是否与预期不同。虽然这只是第一个这样的天体,但结果表明没有证据表明Ia型亮度会随红移而变化。我们还需要更多的数据,但现在,基于Ia型超新星的宇宙膨胀率理论及其最终命运仍然保持不变。皮埃尔还在美国天文学会第244次会议上介绍了他的研究成果。早期宇宙的环境与现在截然不同。科学家们期望看到来自恒星的古老超新星,这些恒星所含的重化学元素远远少于太阳这样的恒星。将这些超新星与本地宇宙中的超新星进行比较,将有助于天体物理学家了解早期恒星的形成和超新星的爆发机制。STScI研究员马修-西伯特(MatthewSiebert)说:"我们基本上为瞬变宇宙打开了一扇新窗口。从历史上看,每当我们这样做的时候,我们都会发现一些极其令人兴奋的东西--一些我们意想不到的东西。"JADES团队成员、亚利桑那大学图森分校研究教授EiichiEgami说:"由于韦伯望远镜非常灵敏,它几乎能在其指向的所有地方发现超新星和其他瞬变体。这是利用韦伯望远镜对超新星进行更广泛观测的重要第一步。"编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1434348.htm手机版:https://m.cnbeta.com.tw/view/1434348.htm

封面图片

“圣诞树星系团”:韦伯望远镜和哈勃望远镜联合观测的炫目杰作

“圣诞树星系团”:韦伯望远镜和哈勃望远镜联合观测的炫目杰作MACS0416的全色视图,这是一个距离地球约43亿光年的星系团。这幅图像是通过将美国宇航局詹姆斯-韦伯太空望远镜的红外观测数据与美国宇航局哈勃太空望远镜的可见光数据相结合而生成的。由此产生的蓝色和红色棱镜全景图为星系的距离提供了线索。图片来源:NASA、ESA、CSA、STScI、JoseM.Diego(IFCA)、JordanC.J.D'Silva(UWA)、AntonM.Koekemoer(STScI)、JakeSummers(ASU)、RogierWindhorst(ASU)、HaojingYan(密苏里大学)包括德克萨斯农工大学天文学家王立凡博士在内的研究小组将这幅新图像命名为"圣诞树星系团",它结合了哈勃望远镜的可见光和韦伯望远镜探测到的红外光,展示了距离地球约43亿光年的星系团MACS0416。由于该星系团能够通过一种被称为引力透镜的现象放大来自更遥远背景星系的光线,因此研究人员能够识别出放大的超新星,甚至是放大倍数非常高的单个恒星。密苏里大学天文学家阎昊晶博士(HaojingYan)说:"我们称MACS0416为圣诞树星系团,既因为它色彩斑斓,也因为我们在其中发现了这些闪烁的灯光。"这篇论文由王立凡合著,已被接受发表在《天体物理学杂志》上。自2006年以来,王立凡一直是德克萨斯农机大学物理和天文学系以及乔治-P.和辛西娅-伍兹-米切尔基础物理和天文学研究所(GeorgeP.andCynthiaWoodsMitchellInstituteforFundamentalPhysicsandAstronomy)的成员,他是一个时域天文学团队的成员,该团队正在利用JWST发现宇宙中最早的超新星,其中最古老的记录可以追溯到宇宙诞生30多亿年的时候。这个国际合作小组被称为"用于重离子化和透镜科学的主要河外星系区域"(PEARLS),由亚利桑那州立大学天文学家罗吉尔-温德霍斯特(RogierWindhorst)博士领导。该团队的方法之一是利用韦伯望远镜无与伦比的观测能力来搜寻观测亮度随时间变化的天体,即所谓的瞬变天体。在JWST发射前发表的2017年白皮书中,王和他的合著者预测,这台望远镜将利用其强大的主成像仪--近红外相机(NIRCam)--在一次拍摄中发现几个这样的瞬变天体。他们引用MACS0416图像及其包含的14个瞬变天体作为佐证,并指出这些发现超出了研究小组的预测。"JWST正在宇宙中发现大量的瞬变天体,主要是超新星,"王说。"它不仅发现了超新星,还发现了遥远星系中被附近前景星系引力场放大的恒星。"这些发现是通过对星系团MACS0416方向的天空区域进行反复观测而获得的。北黄道极(NEP)是JWST能够全年持续指向并获取数据的区域,是未来获取时域观测数据的理想地点。前所未有的灵敏度使得一些超新星,比如白矮星爆炸产生的超新星能够在整个宇宙中被探测到,甚至可以追溯到宇宙刚刚开始形成第一批恒星的时代。"天文学有两个基本问题:第一批恒星是如何形成的,以及驱动宇宙膨胀的力量的性质是什么JWST能够发现的瞬变现象将为解决这些问题提供所需的数据。这些发现表明,JWST是研究宇宙黎明期微弱瞬变的最强大工具,宇宙黎明期是指宇宙从没有恒星的黑暗时代走到今天的时代。它观测到的超新星可以探究第一批恒星的诞生过程,以及宇宙膨胀到宇宙年龄不足10亿年的过程。"其中一些超新星很可能是低质量恒星死亡后演变成白矮星,并通过热核爆炸爆发出来的。通过透镜恒星可以研究遥远宇宙中的单个恒星。这些早期恒星也可能是质量非常大的恒星,它们通过所谓的成对生产不稳定过程产生极其明亮的瞬态。"我们预计,这些'常规可发现'的瞬变将在解决宇宙黑暗时代的结束和暗宇宙膨胀的物理学问题方面具有巨大的潜力,"王说。...PC版:https://www.cnbeta.com.tw/articles/soft/1399773.htm手机版:https://m.cnbeta.com.tw/view/1399773.htm

封面图片

哈勃太空望远镜拍摄到孤立星系IC 1776灾难性剧烈爆炸的残余能量

哈勃太空望远镜拍摄到孤立星系IC1776灾难性剧烈爆炸的残余能量哈勃太空望远镜捕捉到了这幅令人惊叹的IC1776星系图像,它位于1.5亿光年之外的双鱼座。图片来源:ESA/哈勃和NASA,A.Filippenko最近,IC1776发生了一次灾难性的剧烈爆炸--超新星--它是在2015年被里克天文台超新星搜索发现的。自动机器人望远镜分布在全球各地的网络中,由专业和业余天文学家操作,无需人工干预,就能揭示徘徊小行星、引力微透镜或超新星等短暂的天文现象。哈勃在两个不同的观测计划中调查了超新星SN2015ap的余波,这两个计划都是为了梳理超新星爆炸后留下的碎片,以便更好地了解这些高能事件。各种望远镜会自动跟踪超新星的探测,以获得这些事件的亮度和光谱的早期测量结果。这些测量结果与揭示超新星残余能量的后期观测结果相辅相成,可以揭示最初引发这些宇宙灾难性爆炸的系统。...PC版:https://www.cnbeta.com.tw/articles/soft/1381499.htm手机版:https://m.cnbeta.com.tw/view/1381499.htm

封面图片

NASA罗曼太空望远镜如何探测绚丽的千新星爆炸?

NASA罗曼太空望远镜如何探测绚丽的千新星爆炸?在整个宇宙中,有多少像这样的辉煌喷发?我们还不知道。到目前为止,只有少数几个千新星被探测到。美国宇航局即将推出的南希·格雷斯·罗曼太空望远镜将每隔几天对天空中的相同区域进行勘测,这将有助于研究人员跟进探测,甚至准确定位千新星的。理想情况下,这将掀起一场关于这一神秘的宇宙现象的新信息的"淘金热"。罗曼太空望远镜是美国宇航局的一个观测站,旨在揭开暗能量和暗物质的秘密,搜索和成像系外行星,并探索红外天体物理学的许多课题。资料来源:美国国家航空航天局罗曼望远镜如何扫描引人注目的爆炸当密度最大、质量最大的恒星--也是超级小的恒星--相互碰撞或与黑洞碰撞时会发生什么?它们会发出灿烂的爆炸,被称为千新星。可以把这些事件看作是宇宙的天然烟火。理论家们怀疑它们会定期出现在整个宇宙中,无论是近处还是远处。科学家们很快就会有一个额外的观测站来帮助跟踪甚至侦察这些非凡的事件。美国宇航局的南希-格雷斯-罗曼太空望远镜,它预计将于2027年5月发射。在千新星中,关键的角色是中子星,即在超新星爆炸过程中在重力作用下坍缩的恒星的中心核心。它们每个都有类似于太阳的质量,但直径只有大约6英里(10公里),它们的密度大得惊人。当它们碰撞时,它们发出的碎片以接近光速的速度移动。这些爆炸也被认为可以锻造重元素,如金、铂和锶(这使得实际产生的"烟花"具有惊人的红色)。这些元素射向太空,有可能使它们最终进入形成地球等陆地行星地壳的岩石中。美国宇航局的罗曼太空望远镜将如何探测千新星?部分优势是由于该望远镜的宽阔视野。罗曼的视野比哈勃太空望远镜的红外视野大200倍。一旦罗曼在发射后开始定期观测天空,计划在2027年之前,研究人员期望能够识别更多的这些壮观的事件,包括附近和非常遥远的地方。尽管我们还不知道这些事件的发生率,但当Roman的数据涌入时,我们将开始了解这些合并的频率--以及结果如何。资料来源:NASA,AlyssaPagan(STSCI)天文界在2017年捕捉到了这些非凡的千新星事件中的一个。美国国家科学基金会激光干涉仪引力波观测站(LIGO)的科学家们首先用引力波--时空的涟漪--探测到了两颗中子星的碰撞。几乎同时,美国宇航局的费米伽马射线太空望远镜探测到了高能光。美国宇航局迅速转向,用更广泛的望远镜群来观察这一事件,并在一系列图像中捕捉到了爆炸后不断扩大的碎片所发出的消逝的光芒。但是这个例子中的参与者实际上是在我们的"后院"相撞的,至少在天文方面是这样。它们只在1.3亿光年之外。一定有更多的千新星--以及许多更远的千新星--点缀在我们不断活动的宇宙中。北卡罗来纳州达勒姆的杜克大学物理学助理教授丹尼尔-M-斯科尔尼奇说:"我们还不知道这些事件的速率。Scolnic领导的一项研究估计了过去、现在和未来包括Roman在内的观测站可能发现的千禧年新星的数量。我们确定的单颗千里眼是典型的吗?这些爆炸的亮度如何?它们发生在什么类型的星系中?现有的望远镜不能覆盖足够广泛的区域,也不能深入观察,以发现更多的遥远的例子,但这将随着罗曼的出现而改变。"发现更多、更遥远的千新星在这个阶段,LIGO在识别中子星合并方面处于领先地位。它可以探测到天空中所有区域的引力波,但一些最遥远的碰撞可能太弱而无法被识别。罗曼将加入LIGO的搜索,提供互补性,帮助"填充"发现团队。罗曼是一种巡天望远镜,它将反复扫描天空的相同区域。此外,Roman的视野比哈勃太空望远镜的红外视野大200倍--虽然没有LIGO那么大,但对于一个拍摄图像的望远镜来说是巨大的,它的节奏将使研究人员能够发现天空中的物体何时变亮或变暗,无论是在附近还是非常遥远的地方。罗曼将为研究人员提供一个强大的工具来观察极远的千新星。这是由于空间的扩张。数十亿年前离开恒星的光线随着时间的推移被拉伸成更长、更红的波长,也就是所谓的红外光。由于罗曼擅长捕捉近红外光,它将探测到来自非常遥远的物体的光。它们有多远?位于新墨西哥州洛斯阿拉莫斯的洛斯阿拉莫斯国家实验室的博士后研究员EveChase解释说:"Roman将能够看到一些千新星,其光线经过了大约70亿年才到达地球。Chase领导了一项最近的研究,该研究模拟了千新星抛射物的差异会如何改变我们从包括罗曼在内的天文台观察到的情况。"近红外光还有一个好处:它提供了更多的时间来观察这些短命的爆发。较短波长的光,如紫外线和可见光在一两天内就会从视野中消失。近红外光可以收集一个星期或更长时间。研究人员一直在模拟数据,看看这将如何运作。"对于模拟的千新星的一个子集,罗曼将能够在中子星合并发生后的两个多星期内观测到一些,"Chase补充说。"它将是观察非常遥远的千新星的绝佳工具。"很快,研究人员就会知道更多关于千新星发生的地点,以及这些爆炸在宇宙历史上发生的频率。那些更早发生的是否在某些方面有所不同?Scolnic说:"Roman将使天文学界开始进行群体研究,同时对这些爆炸的物理学进行一系列新的分析。"巡天望远镜提供了巨大的可能性--同时也提供了大量的数据,需要精确的机器学习。天文学家们正在通过编写代码来应对这一挑战,使这些搜索自动化。最终,罗曼的海量数据集将帮助研究人员揭开也许是迄今为止关于千新星的最大谜团:两颗中子星碰撞后会发生什么?它是产生一颗中子星、一个黑洞,还是其他完全不同的东西?有了罗曼,我们将收集研究人员需要的统计数据,以取得实质性的突破。...PC版:https://www.cnbeta.com.tw/articles/soft/1332415.htm手机版:https://m.cnbeta.com.tw/view/1332415.htm

封面图片

哈勃望远镜带来对UGC 11860星系的超新星发现

哈勃望远镜带来对UGC11860星系的超新星发现在这张NASA/ESA哈勃太空望远镜拍摄的照片中,螺旋星系UGC11860似乎在背景星系的衬托下静静地漂浮着。UGC11860位于大约1.84亿光年外的飞马座,它平静的外表是骗人的;这个星系最近发生了一次令人难以想象的高能恒星爆炸。哈勃太空望远镜拍摄的飞马座约1.84亿光年外的螺旋星系UGC11860的图像,该星系最近在2014年发生了一次由机器人望远镜探测到的高能超新星爆炸。图片来源:ESA/哈勃和NASA,A.Filippenko,J.D.Lyman2014年,UGC11860星系发生了一次超新星爆炸--一颗大质量恒星以灾难性的剧烈方式结束了自己的生命--这是由一台专门搜寻瞬态天文现象的机器人望远镜探测到的。两个不同的天文学家小组利用哈勃的宽视场相机3搜索了这一巨大宇宙爆炸的余波,并揭开了其挥之不去的残余物。其中一个小组对UGC11860进行了探索,以进一步了解最终在超新星中灭亡的原恒星系统。超新星爆炸期间的巨大能量过程主要负责形成元素周期表上介于硅和镍之间的元素。这意味着了解原恒星系统的质量和组成的影响对于解释地球上的许多化学元素是如何起源的至关重要。另一组天文学家利用哈勃望远镜跟踪机器人望远镜探测到的超新星。这些自动的天空之眼在没有人类干预的情况下运行,并捕捉夜空中的瞬时事件。机器人望远镜使天文学家能够探测到从意想不到的小行星到罕见的、不可预知的超新星等各种天体,并且能够识别出有趣的天体,这些天体随后可以由强大的望远镜(如哈勃望远镜)进行更详细的研究。...PC版:https://www.cnbeta.com.tw/articles/soft/1370307.htm手机版:https://m.cnbeta.com.tw/view/1370307.htm

封面图片

罗曼空间望远镜将让NASA拥有回看宇宙时间线的能力

罗曼空间望远镜将让NASA拥有回看宇宙时间线的能力据位于马里兰州格林贝尔特的美国宇航局戈达德太空飞行中心的博士后AaronYung说,韦伯和哈勃的设计是通过非常精选的维度来观察宇宙。不过,有了罗曼,美国宇航局计划以一种更大的方式来观察宇宙。该航天局认为这将使其能够倒转宇宙,并更好地了解事物过去的情况。罗曼太空望远镜目前定于2027年的某个时候发射。虽然我们在它投入使用之前还有几年时间,但美国宇航局已经开始对它的能力进行模拟。这意味着,我们终于能够在同一幅图像中看到更多的宇宙了。根据美国宇航局分享的模拟图像,罗曼将真正让天文学家一次看到成千上万的星系。然后,这些数据可以与来自韦伯和哈勃的数据结合起来,进一步回溯我们宇宙的特定部分,以便我们可以看到它在过去的样子。一组研究人员在12月发表了一篇论文,描述了模拟的结果,该论文可在《皇家天文学会月刊》上阅读:https://academic.oup.com/mnras/article-abstract/519/1/1578/6884144...PC版:https://www.cnbeta.com.tw/articles/soft/1347493.htm手机版:https://m.cnbeta.com.tw/view/1347493.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人