经基因工程改造的细菌可寻找并消灭肿瘤

经基因工程改造的细菌可寻找并消灭肿瘤趋化作用是由细胞因子驱动的,细胞因子是向其他免疫细胞发出信号的微小蛋白质。趋化因子是引起免疫细胞迁移的细胞因子的一个子集。趋化因子CXCL16招募T细胞,即帮助对抗感染和癌症的白细胞,使其渗透到细胞中。CXCL16及其受体CXCR6已被证明可提高结肠癌和肺癌患者的存活率。而且最近的研究表明,CXCL16和CXCR6一起产生抗肿瘤免疫力。然而,没有人发现一种将CXCL16送入肿瘤细胞环境的方法。科学家们知道某些种类的细菌可以在肿瘤内生存已经有一段时间了。哥伦比亚大学研究人员的一项新研究利用了这一知识,将其与基因工程相结合,创造了一种通过招募人体自身的免疫细胞来瞄准和摧毁肿瘤的方法。该研究的高级作者尼古拉斯-阿帕斯博士说:"通过几十年的研究,我们了解了免疫反应是如何发展的,[我们]正在开发专门针对这些不连续步骤中每一个步骤的治疗方法。"该研究的关键是引入了大肠杆菌(E.coli)的工程益生菌菌株,这是一种人类肠道中常见的细菌。大肠杆菌被设计成包含一个同步裂解的路径,这是一种利用某些细菌入侵体内疾病部位的先天能力的方式。当细菌进入肿瘤时,该路径被触发,导致它们破裂,或裂解。裂解能使趋化因子反复局部传递,从而招募T细胞并增强抗肿瘤免疫力。2019年,同样的研究人员设计了一株非致病性细菌,使其像特洛伊木马一样,进入小鼠的肿瘤,从内部攻击它们。他们发现,工程细菌清除了肿瘤,减少了肿瘤转移的发生率。在目前的研究中,除了使用一种工程细菌外,研究人员还将CXCL16的表达与另一种趋化因子CCL20相结合。CCL20吸引淋巴细胞(一种白细胞)和树突状细胞,树突状细胞负责通过向其他免疫细胞呈现抗原来启动适应性免疫反应。研究人员发现,将这两种趋化因子结合起来增强了它们的治疗效果,以一种以前无法获得的方式加强了对肿瘤的免疫反应。Arpaia说:"通过将其与驱动树突状细胞(一种关键的先天免疫细胞类型)浸润和激活的趋化因子结合起来,对肿瘤抗原的检测就会增加。"他们在小鼠身上的实验显示,工程细菌对直接注射了该细菌的肿瘤以及没有注射过的更远的肿瘤产生了强烈的免疫反应。重要的是,这些细菌并没有影响健康组织。这些细菌只会在肿瘤环境中定植,而且它们只达到足够数量后才能以诱导肿瘤内的裂解,所以我们无法在其他健康器官中检测到细菌。研究人员正在继续完善他们的技术,以期将其用于人体临床试验。该研究发表在《科学进展》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1349303.htm手机版:https://m.cnbeta.com.tw/view/1349303.htm

相关推荐

封面图片

"扒手"细菌窃取肿瘤DNA 可准确诊断癌症

"扒手"细菌窃取肿瘤DNA可准确诊断癌症在这项新研究中,研究人员试图利用这种能力来检测癌症。肿瘤往往会将其DNA片段脱落到周围环境中。因此,研究小组利用CRISPR基因编辑工具对巴氏杀菌菌器进行了改造,使其能够针对与癌症相关的KRAS基因中的一种特殊突变。如果出现这种突变,细菌就会将该基因纳入自己的基因组,从而触发一个特定的信号,医生就能检测出患者是否患有癌症。在实践中,细菌会被释放到人体的一部分,如结肠。如果细菌遇到与癌症相关的基因突变,它们就会吸收这种DNA,从而抵抗抗生素。随后,从粪便样本中提取细菌,并将其放入铺有抗生素的实验室培养皿中。如果细菌未能在实验皿中定植,就说明它们的基因组没有变化,因此没有癌症存在。但是,如果细菌生长,则表明存在癌症或癌前息肉。图示工程细菌如何充当大肠癌传感器研究人员将这项技术称为"靶向CRISPR识别水平基因转移细胞检测技术"(CATCH)。在对小鼠的测试中,该系统检测结直肠癌存在与否的准确率达到了100%。这项研究的共同第一作者约瑟芬-赖特(JosephineWright)说:"当我在显微镜下看到吸收了肿瘤DNA的细菌时,我感到不可思议。患有肿瘤的小鼠长出了绿色的细菌菌落,它们已经获得了在抗生素平板上生长的能力"。研究小组表示,这项技术不仅可以帮助更早地诊断结直肠癌,还可以用于治疗这种疾病。它还可以应用于其他形式的癌症,甚至其他需要检测特定类型DNA的情况。...PC版:https://www.cnbeta.com.tw/articles/soft/1376281.htm手机版:https://m.cnbeta.com.tw/view/1376281.htm

封面图片

新研究:肠道细菌可改变自身基因以应对肠道炎症

新研究:肠道细菌可改变自身基因以应对肠道炎症以色列理工学院近日发布公报说,该校研究人员参与的一个国际团队研究发现,肠道中的细菌可以改变自身基因以应对肠道炎症,从而影响人体免疫系统。相关研究成果发表在美国细胞出版社旗下期刊《细胞宿主与寄生体》上。研究人员说,该研究揭示了肠道微生物可运用一种“巧妙”的适应策略,使它们能根据炎症或病毒攻击等局部条件动态重新编码基因。然而,这种改变可能会减少一些能够调节免疫系统、抑制肠道炎症的分子的产生,使疾病恶化。

封面图片

科学家工程改造皮肤细菌 使其生产普通药物对抗痤疮

科学家工程改造皮肤细菌使其生产普通药物对抗痤疮痤疮的起因是毛囊被死皮细胞和油脂堵塞,继而发炎,形成我们再熟悉不过的粉刺、丘疹和白头。在打算不挤破它们的时候,我们可以用杀死油脂分泌细胞的药物或针对毛囊中细菌的抗生素来治疗。最近更多的实验性研究包括粉刺疫苗、益生菌或微针贴片,它们都能攻击致病的细菌。但如果我们能让这些细菌为我们工作呢?在这项新研究中,西班牙庞培法布拉大学(UPF)的科学家们研究了如何设计皮肤细菌来生产痤疮药物中的活性成分。他们的目标是痤疮丙酸杆菌,这是皮肤上最常见的细菌种类,也是生活在毛囊深处的细菌。过度分泌一种叫做皮脂的油脂是痤疮的常见诱因,许多痤疮药物如异维A酸都是通过杀死产生皮脂的细胞来发挥作用的。在这种情况下,痤疮丙酸杆菌被设计成能产生一种名为NGAL的蛋白质,这种蛋白质能介导自然产生的异维A酸。研究小组在实验室培养的人类皮肤细胞中测试了这种经过编辑的细菌,发现它能够产生和分泌NGAL,减少皮脂分泌。在对小鼠的测试中,这种细菌也能存活并发挥作用,但由于小鼠的皮肤与我们的皮肤差别很大,因此无法通过这种方式测试其对痤疮的影响。这种技术不仅能帮助清除痤疮,还能减少对抗生素的依赖,因为抗生素正日益导致细菌产生抗药性。研究人员说,虽然还需要做更多的工作,包括首先在三维皮肤模型上进行尝试才能将这种技术用于人体试验,但它也可用于治疗其他皮肤病。首先是特应性皮炎。这项研究的首席研究员马克-居尔(MarcGüell)说:"我们开发了一个技术平台,为编辑任何细菌治疗多种疾病打开了大门。现在的重点是利用痤疮丙酸杆菌治疗痤疮,但我们也可以提供基因电路来创建智能微生物,用于与皮肤传感或免疫调节相关的应用。"这项研究发表在《自然-生物技术》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1416741.htm手机版:https://m.cnbeta.com.tw/view/1416741.htm

封面图片

纳米技术的突破使癌症免疫疗法对实体肿瘤更有效

纳米技术的突破使癌症免疫疗法对实体肿瘤更有效该研究详细介绍了使用这一平台将一种激活分子人为地附着在肿瘤细胞表面,在体内和体外模型中引发免疫反应。它将于今天(11月10日)发表在《自然-纳米技术》杂志上。放射肿瘤学助理教授、医学博士WenJiang和神经外科教授、医学博士BettyKim共同领导了这项研究,该研究由德克萨斯大学MD安德森癌症中心的一个研究团队进行。Jiang说:"有了这个新平台,我们现在有了一种策略,可以将实体瘤,至少在免疫学上,转换为类似于血液肿瘤,血液肿瘤对免疫治疗的反应率往往要高得多。如果我们能够在临床上转化并验证这种方法,它可能使我们能够更接近免疫疗法药物对传统上反应不佳的癌症的最大活性水平。"在这幅图中,免疫细胞最初并不识别癌细胞。在BiTN颗粒(红色),包括"吃我"信号(茶色),附着在癌细胞上后,免疫细胞识别出该细胞并吞噬它。资料来源:德克萨斯大学MD安德森癌症中心免疫疗法在白血病和淋巴瘤等血癌中具有很高的反应率,但在整个实体瘤中的成功率却不尽相同。科学家们一直在努力进一步了解禁止更好反应的机制。一种解释是,血癌与实体瘤细胞上免疫调节分子的不同表达影响了它们与免疫细胞的互动方式。淋巴细胞激活分子家族成员7(SLAMF7)受体在激活身体的免疫细胞对抗癌细胞方面至关重要,充当了"吃掉我"的信号。然而,它几乎只存在于血癌细胞的表面,而不存在于实体肿瘤细胞中,这使得它成为研究人员免疫转换方法的一个有吸引力的目标。为了促进SLAMF7在实体肿瘤细胞上的表达,研究人员开发了他们的双特异性肿瘤转化纳米结合物(BiTN)平台。这些纳米系统被设计成一个分子与目标肿瘤细胞的表面结合,第二个分子激活免疫反应。在这项研究中,研究人员将BiTN与SLAMF7和一种HER2识别抗体一起用于靶向HER2阳性乳腺癌细胞。在实验室模型中,该纳米结合物成功地将SLAMF7附着在乳腺癌细胞上,催生免疫细胞吞噬或摄取的能力。该方法还使乳腺癌细胞对抗CD47抗体的治疗敏感,该抗体阻断了肿瘤细胞发出的"不要吃我"的信号,进一步提高了实体瘤的反应。据作者说,这个平台最令人兴奋的地方之一是它的广泛的潜在应用。这种方法不会专门针对一种癌症类型或一种调节分子,相反,它有可能成为一种适用于几种不同实体瘤类型的通用策略。作为概念验证,作者还开发了用叶酸代替抗HER2抗体的BiTN,以针对三阴性乳腺癌,结果类似。Kim说:"因为这些是工程构建物,这可以作为一种即插即用的方法,将不同的肿瘤靶向剂或免疫分子纳入纳米粒子的表面。对于那些对免疫疗法没有反应的实体瘤患者,我们认为这是一个额外的优势,可以针对没有反应的肿瘤部分。"...PC版:https://www.cnbeta.com.tw/articles/soft/1332441.htm手机版:https://m.cnbeta.com.tw/view/1332441.htm

封面图片

基于细菌的癌症疗法着眼于重新激活已接种的疫苗

基于细菌的癌症疗法着眼于重新激活已接种的疫苗一般来说,疫苗的作用是刺激免疫系统对与病毒、细菌或其他病原体(包括癌症)相关的特定抗原产生反应。当然,疫苗通常是在注射给病人之前就给定了目标,但在这项新研究中,马萨诸塞大学阿默斯特分校的研究人员调查了如何重新激活现有的免疫反应来靶向癌症。这项研究的资深作者尼尔-福布斯(NeilForbes)说:"我们的想法是,每个人都接种了一大堆疫苗,如果能把这种免疫接种用于癌症,就能用它来消灭癌症。但癌症显然不会在其表面显示病毒分子。所以问题是,我们能否利用沙门氏菌在癌细胞内提取一种分子,然后让免疫系统像攻击入侵的病毒一样攻击该癌细胞?"研究小组对一株沙门氏菌进行了基因工程改造,使其能够寻找癌细胞,一旦发现癌细胞,就会输送一种特殊的蛋白质--在本例中就是鸡蛋中含有的卵清蛋白。这种蛋白质会分散到癌细胞内的液体中。这种细菌疗法适用于罹患胰腺癌的小鼠,重要的是,这些小鼠以前曾接种过卵清蛋白疫苗。当这种蛋白质在细胞液中扩散时,引起了先前启动的免疫系统的注意,从而对肿瘤做出反应。七只试验小鼠中有三只(43%)的癌症被完全治愈,而所有小鼠的存活时间都大幅延长。接下来,研究人员将胰腺癌细胞重新引入小鼠体内,发现这种反应足以防止疾病再次发生。福布斯说:"所有肿瘤都没有生长,这意味着小鼠已经产生了免疫力,不仅是对卵清蛋白的免疫力,也是对癌症本身的免疫力。免疫系统已经知道肿瘤是一种免疫原。我正在做进一步的工作,以弄清这究竟是如何发生的。"研究人员希望癌症患者最终可以接种一种疫苗,其中的有效成分是他们已经接种过的病原体的蛋白质--也许是儿童时期的常规风疹接种,或者是最近的COVID-19疫苗。尽管这项研究目前听起来很有希望,但重要的是这些都是非常早期的结果,只在小鼠身上进行了测试,而且数量很少。在开始人体试验之前,还需要进一步的动物实验来确保这项技术的安全性。这项研究发表在《免疫学前沿》(FrontiersinImmunology)杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1390511.htm手机版:https://m.cnbeta.com.tw/view/1390511.htm

封面图片

科学家发现细菌细胞壁的新致命弱点

科学家发现细菌细胞壁的新致命弱点新月柄杆菌是一种新月形二形细菌,是研究细菌细胞周期调控、细胞分化和形态发生的主要模式生物之一。使用DNA-PAINT技术观察细胞,染色体DNA被染成蓝色,细胞膜被染成红色。图片来源:马克斯-普朗克陆地微生物研究所/埃尔南德斯-塔马约在进化过程中,细胞发展出了多种策略来加强其包膜以抵御内部渗透压,从而使它们能够在各种不同的环境中生长。大多数细菌种类都会在细胞质膜周围合成半刚性细胞壁,其主要成分肽聚糖会形成一个致密的网状结构,将细胞包裹起来。细胞壁除了起保护作用外,还能形成特定的细胞形状,如球形、棒状或螺旋形,从而有利于运动、表面定植和致病。细胞壁的存在也带来了挑战:细胞必须不断重塑细胞壁才能生长和分裂。为此,细胞必须小心翼翼地撕裂细胞壁,使其扩张和变化,同时迅速用新材料修补缝隙,防止细胞壁坍塌。这种细胞壁重塑过程包括裂解酶(又称自溶酶)对键的裂解,以及随后肽聚糖合成酶对新细胞壁材料的插入。这两组相互对抗的蛋白质的活动必须密切协调,以防止肽聚糖层出现薄弱点,导致细胞溶解和死亡。马克斯-普朗克陆地微生物学研究所研究员、马尔堡大学微生物学教授马丁-坦比希勒领导的研究小组开始研究自溶机制的组成和功能。他们的研究重点是淡水环境中的新月柄杆菌,这种细菌被广泛用作研究细菌基本细胞过程的模式生物。Thanbichler认为,研究自溶蛋白的功能是一项具有挑战性的任务。"虽然我们对合成机器有很多了解,但自溶蛋白被证明是一个难以攻克的难题"。Thanbichler团队的博士后研究员MariaBillini补充说:"细菌通常含有多种类型的自溶蛋白,它们来自不同的酶家族,具有不同的靶标。这意味着这些蛋白质具有高度冗余性,删除单个自溶蛋白基因往往对细胞形态和生长影响甚微。"通过共免共沉淀筛选和体外蛋白质-蛋白质相互作用试验对潜在的自溶蛋白调节因子进行分析后发现,一种名为DipM的因子在细菌细胞壁重塑过程中发挥着关键作用。这种关键的调节因子是一种可溶性的周质蛋白,竟然与几类自溶蛋白以及一种细胞分裂因子相互作用,显示出这种调节因子以前未知的杂交性。DipM能够刺激两种活性和折叠方式完全不同的肽聚糖分解酶的活性,这使它成为第一个被发现的能够控制两类自溶酶的调节因子。值得注意的是,研究结果还表明,DipM使用单一界面与其各种靶标相互作用。这项研究的第一作者、博士生阿德里安-伊斯基耶多-马丁内斯(AdrianIzquierdoMartinez)说:"破坏DipM会导致细胞壁重塑和分裂过程的各个环节失去调控,最终导致细胞死亡。"因此,它作为自溶蛋白活性协调者的适当功能对于新月柄杆菌正常的细胞形状维持和细胞分裂至关重要。"对DipM的全面表征揭示了一个新颖的相互作用网络,包括一个自我强化环,它将溶解性转糖基酶和可能的其他自溶蛋白与新月柄杆菌细胞分裂装置的核心连接起来,也很可能与其他细菌的细胞分裂装置连接起来。因此,DipM协调着一个复杂的自溶蛋白网络,其拓扑结构与之前研究的自溶蛋白系统大不相同。马丁-坦比希勒(MartinThanbichler)指出:"这种多酶调节器的功能失常会同时影响多个与细胞壁相关的过程,对它们的研究不仅有助于我们了解细胞壁如何对细胞或环境的变化做出反应。它还有助于开发新的治疗策略,通过同时破坏几种自溶途径来对付细菌"。...PC版:https://www.cnbeta.com.tw/articles/soft/1376317.htm手机版:https://m.cnbeta.com.tw/view/1376317.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人