MIT工程师发现控制原子核为 "量子比特"的新方法

MIT工程师发现控制原子核为"量子比特"的新方法今天最大的量子计算机只配备了几百个"量子比特",即数字比特的量子等价物。图中说明了两束波长稍有不同的激光束可以影响原子核周围的电场,以一种推动该电场的方式,将原子核的自旋推向一个特定的方向,如箭头所示。现在,麻省理工学院的研究人员提出了一种新的方法来制造量子比特并控制它们读写数据。这种方法在现阶段是理论性的,它基于测量和控制原子核的自旋,使用来自两个颜色略有不同的激光器的光束。麻省理工学院博士生HaoweiXu、教授JuLi和PaolaCappellaro以及其他四人在《物理评论X》杂志上发表的一篇论文中描述了这些发现。长期以来,核自旋被认为是基于量子的信息处理和通信系统的潜在构件,而光子也是如此,它是电磁辐射的不连续包,或"量子"的基本粒子。但是哄骗这两个量子物体一起工作是很困难的,因为原子核和光子几乎没有互动,而且它们的自然频率相差六到九个数量级。在麻省理工学院团队开发的新工艺中,进入的激光束的频率差异与核自旋的过渡频率相匹配,促使核自旋以某种方式翻转。核科学与工程系教授卡佩拉罗说:"我们已经找到了一种新的、强大的方法,将核自旋与来自激光的光子对接起来。这种新的耦合机制使它们的控制和测量成为可能,这使得使用核自旋作为量子比特成为更有前途的努力。"研究人员说,这个过程是完全可调整的。例如,其中一个激光器可以被调谐到与现有电信系统的频率相匹配,从而将核自旋变成量子中继器,实现长距离的量子通信。以前尝试用光来影响核自旋是间接的,而是耦合到该核周围的电子自旋,这反过来又会通过磁相互作用影响核。但这需要附近存在未配对的电子自旋,并导致核自旋的额外噪音。对于新方法,研究人员利用了许多核具有电四极的事实,这导致了与环境的电核四极互动。这种相互作用可以受到光的影响,以改变核本身的状态。"核自旋通常是相当弱的相互作用,"李说。"但是通过利用一些核具有电四极的事实,我们可以诱发这种二阶的非线性光学效应,直接耦合到核自旋,而没有任何中间的电子自旋。这使我们能够直接操纵核自旋"。除其他事项外,这可以允许精确识别甚至绘制材料的同位素,而拉曼光谱,一种基于类似物理学的成熟方法,可以识别材料的化学和结构,但不能识别同位素。研究人员说,这种能力可能有许多应用。至于量子存储器,目前正在使用或考虑用于量子计算的典型设备的相干时间--意味着存储的信息可以可靠地保持完整的时间--往往是以一秒钟的小数点来衡量。但在核自旋系统中,量子相干时间是以小时来衡量的。该团队说,由于光学光子被用于通过光纤网络进行长距离通信,因此将这些光子直接耦合到量子存储器或传感设备的能力可以为新的通信系统提供巨大的好处。此外,这种效应可以被用来提供一种将一组波长转换为另一组波长的有效方法。徐说:"我们正在考虑使用核自旋进行微波光子和光学光子的转换,"他补充说,这可以为这种转换提供比其他方法更大的保真度。到目前为止,这项工作是理论上的,所以下一步是在实际的实验室设备中实现这一概念,可能首先是在一个光谱系统中。徐说:"这可能是原则性验证实验的一个很好的候选者。他说,在此之后,他们将解决量子设备,如存储器或转导效应。"...PC版:https://www.cnbeta.com.tw/articles/soft/1349317.htm手机版:https://m.cnbeta.com.tw/view/1349317.htm

相关推荐

封面图片

二维材料中首次实现核自旋量子位控制

二维材料中首次实现核自旋量子位控制据15日发表在《自然·材料》上的论文,美国普渡大学的研究人员通过使用光子和电子自旋量子位来控制二维(2D)材料中的核自旋,实现了在2D材料中写入和读取带有核自旋的量子信息。他们用电子自旋量子位作为原子尺度的传感器,首次在超薄六方氮化硼中实现了对核自旋量子位的实验控制。该研究工作拓展了量子科学和技术的前沿,使原子尺度的核磁共振光谱等应用成为可能。研究人员表示,这是第一个展示2D材料中核自旋的光学初始化和相干控制的工作。自旋量子位可以被用作传感器,例如探测蛋白质结构,或者以纳米级分辨率探测目标的温度。捕获在3D金刚石晶体缺陷中的电子能产生10—100纳米范围的成像和传感分辨率,而嵌入在单层或2D材料中的量子位可更接近目标样本,提供更高的分辨率和更强的信号。为实现这一目标,2019年,六方氮化硼中的第一个电子自旋量子位诞生。此次,研究团队在超薄六方氮化硼中建立了光子和核自旋之间的界面。核自旋可以通过周围的电子自旋量子位进行光学初始化——设置为已知的自旋。一旦被初始化,就可以用无线电频率来改变核自旋量子位,本质上是“写入”信息,或者测量核自旋量子位的变化,即“读取”信息。他们的方法一次利用3个氮原子核,其相干时间是室温下的电子量子位的30多倍。2D材料可以直接层叠在另一种材料上,从而形成一个内置的传感器。研究人员表示,2D核自旋晶格适用于大规模的量子模拟。它可在较高的温度下工作。为控制核自旋量子位,研究人员首先从晶格中移除一个硼原子,并用一个电子取代它。电子位于3个氮原子的中心。每个氮核都处于随机自旋态,可以是-1、0或+1。研究人员用激光将电子泵浦到自旋态为0,这对氮核的自旋影响可忽略不计。最后,受激电子与周围的3个氮核之间的超精细相互作用迫使原子核的自旋发生变化。当循环重复多次时,原子核的自旋达到+1状态,无论重复相互作用如何,它都保持不变。当所有3个原子核都设置为+1状态时,它们就可用作3个量子位。PC版:https://www.cnbeta.com/articles/soft/1304905.htm手机版:https://m.cnbeta.com/view/1304905.htm

封面图片

克服量子的限制 研究人员找到一种控制电子自旋的新方法

克服量子的限制研究人员找到一种控制电子自旋的新方法罗切斯特大学的一个研究小组在物理学副教授约翰-尼科尔的领导下,在《自然-物理学》杂志上发表了一篇论文,概述了操纵硅量子点--微小的、纳米级的半导体,具有显著特性的电子自旋的新方法,作为操纵量子系统信息的一种方式。尼科尔说:"这项研究的结果为基于半导体量子点中的电子自旋的量子比特的相干控制提供了一个有希望的新机制,这可能为开发一个实用的硅基量子计算机铺平道路。"罗切斯特大学的研究人员通过控制硅量子点中电子的自旋,开发了一种在量子系统中操纵信息的新方法。硅中的电子在其自旋(向上和向下箭头)和谷态(蓝色和红色轨道)之间经历了一种被称为自旋-谷态耦合的现象。当研究人员对硅中的电子施加电压(蓝色光芒)时,他们利用自旋-谷耦合效应,可以操纵自旋和谷态,控制电子自旋。资料来源:罗切斯特大学插图/MichaelOsadciw使用量子点作为量子比特一台普通计算机由数十亿个晶体管组成,称为比特。另一方面,量子计算机是基于量子比特,也被称为量子比特。与普通的晶体管不同,它可以是"0"(关闭)或"1"(打开),而量子比特受量子力学规律的支配,可以同时是"0"和"1"。科学家们早就考虑使用硅量子点作为量子比特;控制量子点中电子的自旋将提供一种操纵量子信息传输的方法。量子点中的每个电子都有内在的磁性,就像一个小小的条形磁铁。科学家把这称为"电子自旋"--与每个电子相关的磁矩--因为每个电子是一个带负电的粒子,其行为就像它在快速旋转一样,而正是这种有效的运动引起了磁性。电子自旋是在量子计算中传输、存储和处理信息的一个有希望的候选者,因为它提供了长的相干时间和高的门控保真度,并且与先进的半导体制造技术兼容。量子比特的相干时间是指量子信息因与噪声环境相互作用而丢失之前的时间;长相干时间意味着执行计算的时间更长。高的门控保真度意味着研究人员要进行的量子操作会完全按照他们的要求进行。然而,使用硅量子点作为量子比特的一个主要挑战是控制电子自旋。控制电子自旋控制电子自旋的标准方法是电子自旋共振(ESR),它涉及到对量子比特施加振荡的射频磁场。然而,这种方法有几个局限性,包括需要在低温环境下产生和精确控制振荡磁场,而大多数电子自旋量子比特是在低温环境下工作的。通常情况下,为了产生振荡磁场,研究人员通过电线发送电流,这就会产生热量,从而干扰低温环境。尼科尔和他的同事概述了一种控制硅量子点中电子自旋的新方法,该方法不依赖于振荡电磁场。该方法基于一种被称为"自旋-谷粒耦合"的现象,当硅量子点中的电子在不同的自旋和谷粒状态之间转换时,就会发生这种现象。电子的自旋态指的是它的磁性,而谷态指的是与电子的空间轮廓有关的另一种属性。研究人员应用一个电压脉冲来利用自旋-谷耦合效应,操纵自旋和谷态,控制电子自旋。"这种通过自旋-谷耦合进行相干控制的方法,可以实现对量子比特的普遍控制,并且可以在不需要振荡磁场的情况下进行,而振荡磁场是ESR的一个限制,"尼科尔说。"这使我们有了一条新的途径,可以使用硅量子点来操纵量子计算机中的信息。"...PC版:https://www.cnbeta.com.tw/articles/soft/1346405.htm手机版:https://m.cnbeta.com.tw/view/1346405.htm

封面图片

物理学家发明测量单个原子三维位置的巧妙新方法

物理学家发明测量单个原子三维位置的巧妙新方法新方法可通过单个图像确定原子的所有三个空间坐标。这种由波恩大学和布里斯托尔大学开发的方法是基于一种巧妙的物理原理。这项研究最近发表在专业期刊《物理评论A》上。测量第三维度的挑战在生物课上用显微镜观察过植物细胞的人可能都能回忆起类似的情形。很容易看出,某个叶绿体位于细胞核的上方和右侧。但它们是否位于同一平面上呢?然而,一旦调整显微镜的焦距,就会发现细胞核的图像变得更加清晰,而叶绿体的图像却变得模糊不清。其中一个一定比另一个高一点,一个比另一个低一点。不过,这种方法无法精确显示它们的垂直位置。实际情况就是这样:各种"哑铃"的旋转方向不同,表明原子位于不同的平面上。图片来源:IAP/波恩大学如果要观察单个原子而不是细胞,原理也非常相似。所谓的量子气体显微镜可用于此目的。它可以直接确定原子的x坐标和y坐标。然而,要测量其Z坐标(即到物镜的距离)则要困难得多:为了确定原子位于哪个平面上,必须拍摄多幅图像,并在不同平面上移动焦点。这是一个复杂而耗时的过程。把圆点变成哑铃波恩大学应用物理研究所(IAP)的TangiLegrand解释说:"我们现在已经开发出一种方法,可以一步完成这一过程。为了实现这一目标,我们使用了一种早在上世纪90年代就已在理论上被人们所熟知,但尚未在量子气体显微镜中使用过的效应"。要对原子进行实验,首先必须将其大幅冷却,使其几乎不动。然后,可以将它们困在激光的驻波中。然后,它们就会滑入波谷中,就像鸡蛋坐在鸡蛋盒里一样。一旦被困住,为了显示它们的位置,就将它们暴露在另一束激光下,这束激光会刺激它们发光。由此产生的荧光在量子气体显微镜下显示为一个略微模糊的圆形斑点。量子气体显微镜产生的原子图像通常是一个圆形、略微模糊的斑点。研究人员将其扭曲成哑铃状(图片显示的是理论预测)。哑铃指向的方向表示z坐标。图片来源:IAP/波恩大学安德烈亚-阿尔贝蒂博士解释说:"我们现在已经开发出一种特殊的方法,可以使原子发出的光的波面变形。变形的波面在照相机上产生了一个围绕自身旋转的哑铃形状,而不是典型的圆形斑点。这个哑铃指向的方向取决于光线从原子到照相机的距离"。这位研究员目前已从IAP转到位于加兴的马克斯-普朗克量子光学研究所,他也参与了这项研究。"因此,哑铃的作用有点像罗盘上的指针,让我们可以根据它的方向读出z坐标,"迪特尔-梅斯赫德(DieterMeschede)博士说。波恩大学跨学科研究领域"物质"的成员之一。对量子力学实验非常重要通过这种新方法,只需一张图像就能精确测定原子在三维空间中的位置。例如,如果你想用原子进行量子力学实验,这一点就非常重要,因为通常必须能够精确控制或跟踪原子的位置。这样,研究人员就可以使原子以所需的方式相互影响。此外,这种方法还可用于帮助开发具有特殊特性的新型量子材料。布里斯托尔大学的CarrieWeidner博士解释说:"例如,我们可以研究原子按一定顺序排列时会产生哪些量子力学效应。"这将使我们能够在一定程度上模拟三维材料的特性,而无需合成它们"。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1423110.htm手机版:https://m.cnbeta.com.tw/view/1423110.htm

封面图片

创新性原子器件为连接量子计算机提供了更简单的方法

创新性原子器件为连接量子计算机提供了更简单的方法许多专家认为,这些量子中继器将在未来的通信网络中发挥关键作用,可以增强安全性,并实现远程量子计算机之间的连接。今天(8月30日)发表在《自然》(Nature)杂志上的普林斯顿大学研究报告,详细介绍了一种构建量子中继器新方法的基础。它能发送由植入晶体中的单个离子发出的可用于电信的光。该研究的主要作者杰夫-汤普森(JeffThompson)表示,这项工作已经进行了多年。这项工作结合了光子设计和材料科学的进步。其他领先的量子中继器设计发射的是可见光谱光,这种光在光纤中衰减很快,必须经过转换才能进行长距离传输。这种新设备基于植入主晶体中的单个稀土离子。由于这种离子以理想的红外波长发光,因此不需要这种信号转换,从而可以实现更简单、更强大的网络。普林斯顿大学的研究人员创造了一种新方法,利用电信波段波长的光将量子计算机与高保真信号连接起来。图片来源:SameerA.Khan/Fotobuddy拍摄该设备由两部分组成:掺杂少量铒离子的钨酸钙晶体和蚀刻成J形通道的纳米硅片。在特殊激光的脉冲作用下,离子通过晶体向上发光。但硅片--贴在晶体顶部的半导体--会捕捉并引导单个光子进入光缆。理想情况下,这种光子将被编码为来自离子的信息。更具体地说,信息来自离子的量子特性--自旋。在量子中继器中,收集和干扰来自遥远节点的信号将在它们的自旋之间产生纠缠,从而实现量子态的端到端传输,尽管途中会有损耗。汤普森的团队在几年前就开始使用铒离子,但最初的版本使用的是不同的晶体,存在太多噪音。特别是,这种噪声导致发射光子的频率在一个称为光谱扩散的过程中随机跳动。这阻碍了微妙的量子干涉,而量子干涉正是量子网络运行所必需的。为了解决这个问题,他的实验室开始与电气与计算机工程系副教授NathaliedeLeon和著名固态材料科学家、普林斯顿大学罗素-韦尔曼-摩尔化学教授RobertCava合作,探索能容纳噪音更小的单个铒离子的新材料。他们将候选材料从数十万种筛选到几百种,然后是几十种,最后是三种。最终入围的三种材料,每一种都花了半年时间进行测试。第一种材料被证明不够清晰。第二种材料导致铒的量子特性不佳。但第三种材料,即钨酸钙,却恰到好处。为了证明这种新材料适用于量子网络,研究人员制造了一个干涉仪,光子随机通过两条路径中的一条:一条是几英尺长的短路径,另一条是22英里长的长路径(由卷轴式光纤制成)。离子发出的光子可以走长路径,也可以走短路径,大约有一半的时间,连续的光子会走相反的路径,并同时到达输出端。当这种碰撞发生时,量子干涉会导致光子成对离开输出端,前提是它们从根本上无法区分--具有相同的形状和频率。否则,它们将各自离开干涉仪。通过观察到干涉仪输出端对单个光子的强烈抑制(高达80%),研究小组确凿地证明了新材料中的铒离子会发出不可区分的光子。共同领导这项研究的研究生萨利姆-乌拉里(SalimOurari)认为,这使得信号远远超过了高保真阈值。虽然这项工作跨越了一个重要的阈值,但还需要做更多的工作来提高铒离子自旋中量子态的存储时间。研究小组目前正致力于制造更精制的钨酸钙,减少干扰量子自旋态的杂质。...PC版:https://www.cnbeta.com.tw/articles/soft/1380605.htm手机版:https://m.cnbeta.com.tw/view/1380605.htm

封面图片

研究人员开发出一种利用磁子传输量子信息的新方法

研究人员开发出一种利用磁子传输量子信息的新方法HZDR的研究人员成功地在磁盘中产生了类似于波的激发--即所谓的磁子--来专门操纵碳化硅中原子大小的量子比特。这为量子网络中的信息传输开辟了新的可能性。图片来源:HZDR/MauricioBejarano为了满足这一需求,德累斯顿-罗森多夫亥姆霍兹中心(HZDR)的一个研究小组现在推出了一种传输量子信息的新方法:该小组通过利用磁子(磁性材料中的波状激起)的磁场来操纵量子比特(即所谓的量子比特),磁子发生在微观磁盘中。研究人员在《科学进展》(ScienceAdvances)杂志上发表了他们的研究成果。建造可编程的通用量子计算机是当代最具挑战性的工程和科学研究之一。这种计算机的实现为物流、金融和制药等不同行业领域带来了巨大潜力。然而,由于量子计算机技术在存储和处理信息时存在固有的脆弱性,因此阻碍了实用量子计算机的建造。量子信息被编码在量子比特中,而量子比特极易受到环境噪声的影响。微小的热波动(几分之一度)就可能完全破坏计算。这促使研究人员将量子计算机的功能分布在不同的独立构件中,以努力降低出错率,并利用这些构件的互补优势。"然而,这就带来了一个问题,即如何在模块之间传输量子信息,使信息不会丢失,"HZDR研究员、该刊物第一作者毛里西奥-贝哈拉诺(MauricioBejarano)说。"我们的研究正是在这个特定的利基上,在不同的量子模块之间传输通信。"目前,传输量子信息和寻址量子比特的既定方法是通过微波天线。这是Google和IBM在其超导芯片中使用的方法,也是在这场量子竞赛中处于领先地位的技术平台。"而我们则是通过磁子来寻址量子比特。磁子可被视为穿过磁性材料的磁激发波。这样做的好处是,磁子的波长在微米范围内,比传统微波技术的厘米波短得多。因此,磁子的微波足迹在芯片中花费的空间更少。HZDR小组研究了磁子与碳化硅晶体结构中硅原子空位形成的量子比特的相互作用,碳化硅是一种常用于大功率电子器件的材料。这类量子比特通常被称为自旋量子比特,因为量子信息是由空位的自旋状态编码的。但是,如何利用磁子来控制这类量子比特呢?"通常情况下,磁子是通过微波天线产生的。"贝哈拉诺解释说:"这就带来了一个问题,即很难将来自天线的微波驱动与来自磁子的微波驱动分离开来。"为了将微波从磁子中分离出来,HZDR团队利用了一种在镍铁合金微观磁盘中可以观察到的奇特磁现象。"由于非线性过程,磁盘内的一些磁子具有比天线驱动频率低得多的频率。我们只用这些频率较低的磁子来操纵量子比特"。研究小组强调,他们还没有进行任何量子计算。不过,他们表明,完全用磁子处理量子比特从根本上是可行的。"迄今为止,量子工程界还没有意识到磁子可以用来控制量子比特,"Schultheiß强调说。"但我们的实验证明,这些磁波确实可以派上用场"。为了进一步发展他们的方法,研究小组已经在为未来的计划做准备:他们想尝试控制几个间距很近的单个量子比特,让磁子介导它们的纠缠过程--这是进行量子计算的先决条件。他们的设想是,从长远来看,磁子可以被直接电流激发,其精确度可以达到在量子比特阵列中专门针对单个量子比特。这样就可以将磁子用作可编程量子总线,以极其有效的方式寻址量子比特。虽然未来还有大量工作要做,但该研究小组的研究强调,将磁子系统与量子技术相结合,可以为未来开发实用量子计算机提供有益的启示。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1424810.htm手机版:https://m.cnbeta.com.tw/view/1424810.htm

封面图片

加州理工学院科学家推出消除量子计算机错误的新方法

加州理工学院科学家推出消除量子计算机错误的新方法未来的量子计算机有望彻底改变各个领域的问题解决方式,例如创造可持续材料、开发新药物以及揭示基础物理学中的复杂问题。然而,这些开创性的量子系统目前比我们今天使用的经典计算机更容易出错。如果研究人员能拿出一块特殊的量子橡皮擦,把错误擦掉,岂不美哉?研究人员首次成功演示了"擦除"错误的识别和清除。据《自然》杂志报道,由加州理工学院领导的一组研究人员率先展示了一种量子橡皮擦。物理学家们证明,他们可以精确定位并纠正量子计算系统中被称为"擦除"错误的错误。这项新研究的共同第一作者、加州理工学院物理学教授曼努埃尔-恩德雷斯实验室的研究生亚当-肖说:"通常很难检测到量子计算机中的错误,因为仅仅是寻找错误的行为就会导致更多错误的发生。但我们的研究表明,通过一些细致的控制,我们可以精确定位并消除某些错误,而不会造成任何后果,这就是擦除这一名称的由来。"量子计算机基于亚原子领域的物理定律,例如纠缠,这是一种粒子在不直接接触的情况下保持相互连接和模仿的现象。在这项新研究中,研究人员重点研究了一种使用中性原子阵列或不带电原子的量子计算平台。具体来说,他们操纵了封闭在激光制成的"镊子"内的单个碱土中性原子。这些原子被激发至高能状态,即"雷德贝格"状态,在这种状态下,相邻原子开始相互作用。虽然量子设备中的错误通常很难被发现,但研究人员已经证明,只要小心控制,一些错误就能让原子发光。研究人员利用这种能力,使用原子阵列和激光束执行了一次量子模拟,如图所示。实验表明,他们可以摒弃发光的错误原子,使量子模拟运行得更有效率。图片来源:加州理工学院/兰斯-林田这项研究的另一位共同第一作者帕斯卡尔-烁尔(PascalScholl)解释说:"我们量子系统中的原子会彼此交谈并产生纠缠,"他曾是加州理工学院的博士后学者,现就职于法国一家名为PASQAL的量子计算公司。纠缠是量子计算机超越经典计算机的关键所在。"然而,自然界并不喜欢保持这种量子纠缠状态,"Scholl解释说。"最终,错误会发生,从而破坏整个量子态。这些纠缠态可以看作是装满苹果的篮子,原子就是苹果。随着时间的推移,一些苹果会开始腐烂,如果不把这些苹果从篮子里拿出来换成新鲜的,那么所有的苹果都会迅速腐烂。目前还不清楚如何才能完全防止这些错误的发生,因此,目前唯一可行的办法就是检测和纠正错误"。新的错误捕捉系统的设计方式是,错误的原子在受到激光照射时会发出荧光或发光。Scholl说:"我们有发光原子的图像,它们会告诉我们错误在哪里,因此我们可以将它们排除在最终统计之外,或者使用额外的激光脉冲来主动纠正它们。"在中性原子系统中实施擦除检测的理论最早是由普林斯顿大学电气与计算机工程教授杰夫-汤普森(JeffThompson)及其同事提出的。该团队最近还在《自然》(Nature)杂志上报告了该技术的演示。加州理工学院团队表示,通过消除和定位他们的雷德堡原子系统中的错误,他们可以提高纠缠的总体速率或保真度。在这项新研究中,研究小组发现,1000对原子中只有一对未能纠缠在一起。这比之前的结果提高了10倍,也是在这类系统中观察到的最高纠缠率。归根结底,这些结果对使用雷德贝格中性原子阵列的量子计算平台来说是个好兆头。中性原子是最具可扩展性的量子计算机类型,但直到现在它们才具有高纠缠保真度。参考文献:《高保真雷德堡量子模拟器中的擦除转换》,作者:PascalScholl、AdamL.Shaw、RichardBing-ShiunTsai、RanFinkelstein、JoonheeChoi和ManuelEndres,2023年10月11日,《自然》杂志。DOI:10.1038/s41586-023-06516-4编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1404799.htm手机版:https://m.cnbeta.com.tw/view/1404799.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人