室温超导“再现”,《三体》成真?
室温超导“再现”,《三体》成真?来自美国罗彻斯特大学的助理教授兰加·迪亚斯等宣称,该团队发现了一种由氢、氮和一种名为镥的稀土元素混合制成的材料,可以在21℃和大约1GPa(约等于一万个标准大气压)的压力下实现室温超导电性。这一会议后,连续几天,上海超导公司总工程师朱佳敏接到了非常多电话,很多人来问他,怎么看待这一结果。他有些惊讶,为何这件事如此出圈?兰加·迪亚斯演示的一次实验中,一块磁铁漂浮在液氮冷却的超导体上。图/罗彻斯特大学超导体的一个特性是“零电阻”,亦即电流通过时,没有因为受到任何阻力而导致损失,因此,这是一种革命性的材料。多年来,寻找一种无需极低温或者极高压就可以使用的超导体是超导界的一大梦想,很多业内人士相信,这将开启新的工业革命。不过,业内人士们对此要冷静得多。这已是迪亚斯等人第二次宣布实现室温超导,去年,其上一次的发现因数据原因被《自然》杂志撤稿。因此,这一最新成果的真实性有待确认。当地时间3月9日,《物理评论快报》开始对迪亚斯团队2021年6月发表在该期刊的一篇论文展开调查。与此同时,美国佛罗里达大学高压实验方面的专家詹姆斯·哈姆林发现,迪亚斯2013年完成的博士论文与自己2007年的博士论文有诸多相同段落。对此,罗彻斯特大学在一份声明中称,迪亚斯会对这些错误承担责任,并且正在与他的博士导师合作修改这篇论文。室温超导为何具有革命性?3月8日,迪亚斯等人的研究在线发布于《自然》杂志。根据论文描述,他们在金刚石之间放置了一个直径为100微米的镥箔,然后泵入一种含有99%氢气和1%氮气的混合气体,并将压力加至2GPa。样品在65℃的烘箱中加热,24小时后释放压力,得到了一种在正常条件下呈蓝色的材料。他们发现,该材料在0.3GPa时会变成粉红色,同时开始具有超导性;继续加压力到1GPa时,材料超导温度最高在21℃;当样品压力达到3.2GPa时,材料呈鲜红色,超导可能消失。通常,电流穿过电线时会遇到阻力,一些能量会以热量形式损失掉。科学家们发现,对金属导体而言,当电流通过时,温度越高电阻越大。自然而然,人们开始思考,如果温度能达到绝对零度,是不是电流的电阻会变成零。上世纪初,最后一个没被液化的气体——氦气终于成功液化,可用于制冷。1911年,荷兰科学家海克·昂内斯等人发现汞在4.2K、-269℃附近低温下,电阻似乎神奇消失。K是“开尔文”的简称,是热力学温标或称绝对温标,每变化1K相当于变化1℃,但开尔文以绝对零度作为计算起点,即-273.15℃等于0K。超导材料因其绝对零电阻和完美抗磁特性等性质,几乎在所有电和磁相关的领域都有巨大应用价值。比如,现阶段使用的特高压输电技术,通过提高输电线电压,尽可能降低能量损耗。中科院物理研究所研究员罗会仟对《中国新闻周刊》指出,如果使用超导输电,可以把目前高压交流输电技术中15%左右的损耗降低到1%以下。另一方面,因为磁感应强度与电流强度正相关,因此,如果利用电流量很大的超导体做线材,能获得强大的外部磁场。比如,医院用于核磁共振成像的医疗设备,采用了超导体以获得强大磁性。高速磁悬浮列车也需要借助超导材料。过去100多年里,各类超导材料不断被发现,目前已知的超导材料有成千上万种。不过,朱佳敏说,真正实用化的超导材料非常少,主要分为铌系合金为主的低温超导和钇钡铜氧为主的高温超导材料。室温超导为何仍被寄予厚望?这是因为尽管超导材料展现了其在能源、交通等领域的广阔前景,但低温却限制了它的应用。所谓高温超导材料,并不是人们想象的比如100℃或者200℃。如果在40K以下,约-233.15℃下才能达到超导状态,且一般要在液氦制冷系统下工作的超导体,叫做低温超导;相比下,如果能够在40K以上出现超导电性,就被称为高温超导,许多高温超导体甚至能超过液氮沸点(约-196℃)。超导材料的众多应用前景中,最被寄予厚望的是推动可控核聚变反应堆的发展。2007年,中、印、日、韩、美、俄及欧盟7个成员发表了一份联合宣言,决定在法国建造全世界最大的国际热核聚变实验堆(ITER),从工程角度探讨建造商业核聚变发电站的可行性。星环聚能成立于2021年,是一家核聚变领域的初创公司。创始人陈锐告诉《中国新闻周刊》,这一大装置使用的还是最早的低温超导体材料,必须用到昂贵、大型的液氦冷却系统,ITER这一大型工程投入上千亿元人民币。ITER项目2008年开建,计划2025年建成。近几年,随着高温超导等新材料的工业化生产变得成熟,使得相对较小体积、几亿元成本建造核聚变探索装置变得可行,极大加速了这一领域的商业化。实验室中的兰加·迪亚斯。图/罗彻斯特大学 星环聚能目前使用的超导带材达到超导的临界条件是77K,但在可控核聚变环境中使用时,实际温区是20K,大约是-250℃。虽然已属于高温超导体,但陈锐说,这依然是很低的温度,需要一套昂贵的低温系统。如果未来真能够实现室温超导,显然会极大降低可控聚变的研发及设计成本,也会缩短完成这一事项的时间。在物理学界,一般室温严格定义为300K,约相当于27℃。尽管迪亚斯等人的研究还不是严格意义上的“室温”,但这种超导体的临界温度,已经是在如此低的压力下的最高纪录。此前使用类似材料所进行的实验,所需的压力在数百万个大气压,迪亚斯团队报道的新材料所需压力要低得多。“结合我们在碳硫氢化物中发现的室温超导性表明,三种元素或更多元素的体系可能是实现更高转变温度和在室温条件下实现超导性的关键。”演讲中,迪亚斯表示,有了这些材料,接近环境压强超导和技术应用的黎明已经到来。同类研究刚被撤稿,这次是真的吗?这些年来,超导物理学界一直在尝试突破超导体的临界温度。但是,当问及业内人士,看到这一进展第一反应是什么时,他们并不是感慨成果本身,而是怀疑,“凭什么又是他们?”寻找室温超导非常困难,迪亚斯团队却一次次带来“惊喜”的成果,而且成果一次比一次更轰动。1986年,整个凝聚态物理领域发生了一次“大地震”,一种钡镧铜氧化物在30K,约-243℃左右的临界温度中被发现了超导现象,两名瑞士科学家因此获得了1987年诺贝尔物理学奖。之后,多国科学家们通过大量实验研究,对铜氧化物的超导电性有了更多认识,也掀起全球高温超导研究的热潮。1986年~1987年的短短一年多里,临界超导温度提高近100K。但是,科学家们至今仍没有找到一种真正的室温超导体。目前研究发现,提高超导体临界温度,最好的路径就是从高压着手。“在高压下寻找一个材料更高的临界温度,是一个比较成熟的研究体系了。每次去参加超导会议都有相关的报告。”朱佳敏说。解释超导性的标准理论早就预测,如果氢元素能被足够强力挤压形成金属氢,这种物质就极可能是室温超导体,但前提是要在百万级大气压的极端高压下合成。罗会仟告诉《中国新闻周刊》,如此高的压力,需要借助世界上最硬的物质——金刚石来实现,一对磨平端面的金刚石形成一种高压装置后,对氢加压。不过,氢本身十分活泼、易燃易爆,而且在高压下,渗入氢元素,会导致金刚石硬度突然降低而碎裂,发生“氢脆”现象,种种原因使得这一路径十分艰难。“(金属氢)大家前前后后找了80年,都一直没有成功。”罗会仟说。就在这个时候,2017年,当...PC版:https://www.cnbeta.com.tw/articles/soft/1349605.htm手机版:https://m.cnbeta.com.tw/view/1349605.htm
在Telegram中查看相关推荐
🔍 发送关键词来寻找群组、频道或视频。
启动SOSO机器人