“室温超导” 丑闻是如何发生的?《自然》杂志发表调查报告

“室温超导”丑闻是如何发生的?《自然》杂志发表调查报告2023年曾被寄予希望的人们称为“室温超导元年”。去年3月,一位青年物理学家兰加・迪亚斯在《自然》杂志上发表论文,声称发现了室温超导体,由此拉开了“室温超导热”的序幕。当年7月,韩国团队又声称在另一种材料中发现了室温超导。然而,这两项研究最终都被证实为乌龙事件。近日,韩国团队又宣称发现了另一种新的室温超导体。与此同时,《自然》杂志新闻团队公布了对兰加・迪亚斯的调查结果,揭露了这场物理实验丑闻的内幕故事。《自然》杂志的新闻团队采访了几名迪亚斯的前任研究生,他们也是迪亚斯超导体研究的共同作者。他们表示,团队合成了碳、硫和氢(CSH)的样品,但并没有观察到被称为“迈斯纳效应”的超导性关键标志。然而,学生们却在2020年7月21日收到了迪亚斯发来的关于在样品中发现室温超导性的论文手稿。仅仅过了3小时后,迪亚斯就将手稿提交给了《自然》杂志,学生们几乎没有时间审阅。(新京报)

相关推荐

封面图片

室温超导研究作者迪亚斯被坐实数据伪造和抄袭

室温超导研究作者迪亚斯被坐实数据伪造和抄袭近日,《自然》新闻团队援引的一份124页的调查报告显示,曾宣称发现“室温超导体”的研究者兰加・迪亚斯(RangaDias)在超导体研究中存在实验数据造假和抄袭等行为,被证实为学术不端。这项调查在美国国家科学基金会(NSF)的要求下,由迪亚斯所处的罗切斯特大学聘用的独立科学小组进行,该小组审查了针对迪亚斯的16项指控,并得出结论称,其每一项指控均有可能存在学术不端行为。其中,迪亚斯被证实在发表论文时伪造了碳质硫氢化合物固体分子(CSH)数据,并遭遇抄袭指控,包括:抄袭了20%以上的其他论文;利用他人独创数据在内的成果向NSF申请拨款。据悉,迪亚斯所在团队曾在2020年和2023年两度宣布发现室温超导材料,两篇发表于《自然》杂志封面的论文最后均遭到撤稿。迪亚斯是罗切斯特大学的终身教职员工,但校方目前正试图解雇他。其本人目前尚未回应置评请求。

封面图片

“室温超导”闹剧宣告落幕 曾经备受瞩目的论文正式被撤稿

“室温超导”闹剧宣告落幕曾经备受瞩目的论文正式被撤稿迪亚斯论文再次被撤稿迪亚斯与其同事们的研究是最新一个被撤回的论文。此前,科技界发表了一系列有关室温超导的论文,但均未被成功证明。不过,撤稿事件也给《自然》带来了令人不安的问题:《自然》杂志的编辑们为什么在审查并撤稿了同一小组早些时候的一篇论文之后,还公开了这项研究。《自然》的撤稿说明迪亚斯发言人回应称,迪亚斯否认了外界对于其研究不端行为的指控。“迪亚斯教授打算将这篇科学论文重新提交给一家具备更独立编辑程序的期刊。”该发言人表示。撤稿“大师”这只是迪亚斯的又一次撤稿事件。不到三年前,《自然》杂志曾发表了一篇迪亚斯与其他科学家(许多是最新被撤稿论文的作者)的论文。该论文描述了一种不同的材料,并且也是超导体,尽管只有在每平方英寸近4000万磅的极高气压之下才能实现。但其他研究人员对论文中的一些数据提出了质疑。经过调查后,《自然》不顾作者的反对,同意在2022年9月撤回了这篇论文。今年8月,《物理评论快报》还撤回了迪亚斯在2021年发表的一篇论文,该论文描述了另一种化合物硫化锰的有趣电学性质,尽管它不具备超导性。佛罗里达大学物理学教授詹姆斯·哈姆林(JamesHamlin)告诉《物理评论快报》编辑,论文中用于描述硫化锰电阻的一幅图中的曲线看起来与迪亚斯博士论文中描述另一种材料行为的图表相似。《物理评论快报》聘请的外部专家一致认为,论文中的数据相似度可疑,于是该论文被撤回。与《自然》杂志的撤稿不同,迪亚斯论文的所有九名合著者都同意撤稿。迪亚斯是唯一的反对者,他坚持认为论文准确地描述了研究结果。接着就是最新的超导体论文。在一封署名日期为今年9月8日的信中,11位作者中的8位要求《自然》杂志撤回这篇论文。他们告诉《自然》杂志的编辑:“迪亚斯在准备和提交论文手稿方面没有表现出真诚的态度。”...PC版:https://www.cnbeta.com.tw/articles/soft/1395257.htm手机版:https://m.cnbeta.com.tw/view/1395257.htm

封面图片

美国室温超导论文从《自然》杂志撤稿

美国室温超导论文从《自然》杂志撤稿11月7日,《自然》杂志宣布撤回美国罗切斯特大学物理系助理教授兰加·迪亚斯在今年3月份发表的一篇论文,该论文声称发现了一种在室温和相对低的压力下具有超导性的材料。《自然》杂志称应部分作者的要求,该论文已被撤回。作为对这项工作做出贡献的研究人员,他们表达了这样的观点:发表的论文没有准确反映所研究材料的出处、所进行的实验测量和所应用的数据处理协议。上述作者得出的结论是,这些问题破坏了已发表论文的完整性。此外,该杂志还单独对论文中提出的电阻数据的可靠性提出了担忧。该杂志的调查和发表后审查得出的结论是,这些担忧是可信的、实质性的,但仍未得到解决。——(nature)

封面图片

室温超导“再现”,《三体》成真?

室温超导“再现”,《三体》成真?来自美国罗彻斯特大学的助理教授兰加·迪亚斯等宣称,该团队发现了一种由氢、氮和一种名为镥的稀土元素混合制成的材料,可以在21℃和大约1GPa(约等于一万个标准大气压)的压力下实现室温超导电性。这一会议后,连续几天,上海超导公司总工程师朱佳敏接到了非常多电话,很多人来问他,怎么看待这一结果。他有些惊讶,为何这件事如此出圈?兰加·迪亚斯演示的一次实验中,一块磁铁漂浮在液氮冷却的超导体上。图/罗彻斯特大学超导体的一个特性是“零电阻”,亦即电流通过时,没有因为受到任何阻力而导致损失,因此,这是一种革命性的材料。多年来,寻找一种无需极低温或者极高压就可以使用的超导体是超导界的一大梦想,很多业内人士相信,这将开启新的工业革命。不过,业内人士们对此要冷静得多。这已是迪亚斯等人第二次宣布实现室温超导,去年,其上一次的发现因数据原因被《自然》杂志撤稿。因此,这一最新成果的真实性有待确认。当地时间3月9日,《物理评论快报》开始对迪亚斯团队2021年6月发表在该期刊的一篇论文展开调查。与此同时,美国佛罗里达大学高压实验方面的专家詹姆斯·哈姆林发现,迪亚斯2013年完成的博士论文与自己2007年的博士论文有诸多相同段落。对此,罗彻斯特大学在一份声明中称,迪亚斯会对这些错误承担责任,并且正在与他的博士导师合作修改这篇论文。室温超导为何具有革命性?3月8日,迪亚斯等人的研究在线发布于《自然》杂志。根据论文描述,他们在金刚石之间放置了一个直径为100微米的镥箔,然后泵入一种含有99%氢气和1%氮气的混合气体,并将压力加至2GPa。样品在65℃的烘箱中加热,24小时后释放压力,得到了一种在正常条件下呈蓝色的材料。他们发现,该材料在0.3GPa时会变成粉红色,同时开始具有超导性;继续加压力到1GPa时,材料超导温度最高在21℃;当样品压力达到3.2GPa时,材料呈鲜红色,超导可能消失。通常,电流穿过电线时会遇到阻力,一些能量会以热量形式损失掉。科学家们发现,对金属导体而言,当电流通过时,温度越高电阻越大。自然而然,人们开始思考,如果温度能达到绝对零度,是不是电流的电阻会变成零。上世纪初,最后一个没被液化的气体——氦气终于成功液化,可用于制冷。1911年,荷兰科学家海克·昂内斯等人发现汞在4.2K、-269℃附近低温下,电阻似乎神奇消失。K是“开尔文”的简称,是热力学温标或称绝对温标,每变化1K相当于变化1℃,但开尔文以绝对零度作为计算起点,即-273.15℃等于0K。超导材料因其绝对零电阻和完美抗磁特性等性质,几乎在所有电和磁相关的领域都有巨大应用价值。比如,现阶段使用的特高压输电技术,通过提高输电线电压,尽可能降低能量损耗。中科院物理研究所研究员罗会仟对《中国新闻周刊》指出,如果使用超导输电,可以把目前高压交流输电技术中15%左右的损耗降低到1%以下。另一方面,因为磁感应强度与电流强度正相关,因此,如果利用电流量很大的超导体做线材,能获得强大的外部磁场。比如,医院用于核磁共振成像的医疗设备,采用了超导体以获得强大磁性。高速磁悬浮列车也需要借助超导材料。过去100多年里,各类超导材料不断被发现,目前已知的超导材料有成千上万种。不过,朱佳敏说,真正实用化的超导材料非常少,主要分为铌系合金为主的低温超导和钇钡铜氧为主的高温超导材料。室温超导为何仍被寄予厚望?这是因为尽管超导材料展现了其在能源、交通等领域的广阔前景,但低温却限制了它的应用。所谓高温超导材料,并不是人们想象的比如100℃或者200℃。如果在40K以下,约-233.15℃下才能达到超导状态,且一般要在液氦制冷系统下工作的超导体,叫做低温超导;相比下,如果能够在40K以上出现超导电性,就被称为高温超导,许多高温超导体甚至能超过液氮沸点(约-196℃)。超导材料的众多应用前景中,最被寄予厚望的是推动可控核聚变反应堆的发展。2007年,中、印、日、韩、美、俄及欧盟7个成员发表了一份联合宣言,决定在法国建造全世界最大的国际热核聚变实验堆(ITER),从工程角度探讨建造商业核聚变发电站的可行性。星环聚能成立于2021年,是一家核聚变领域的初创公司。创始人陈锐告诉《中国新闻周刊》,这一大装置使用的还是最早的低温超导体材料,必须用到昂贵、大型的液氦冷却系统,ITER这一大型工程投入上千亿元人民币。ITER项目2008年开建,计划2025年建成。近几年,随着高温超导等新材料的工业化生产变得成熟,使得相对较小体积、几亿元成本建造核聚变探索装置变得可行,极大加速了这一领域的商业化。实验室中的兰加·迪亚斯。图/罗彻斯特大学 星环聚能目前使用的超导带材达到超导的临界条件是77K,但在可控核聚变环境中使用时,实际温区是20K,大约是-250℃。虽然已属于高温超导体,但陈锐说,这依然是很低的温度,需要一套昂贵的低温系统。如果未来真能够实现室温超导,显然会极大降低可控聚变的研发及设计成本,也会缩短完成这一事项的时间。在物理学界,一般室温严格定义为300K,约相当于27℃。尽管迪亚斯等人的研究还不是严格意义上的“室温”,但这种超导体的临界温度,已经是在如此低的压力下的最高纪录。此前使用类似材料所进行的实验,所需的压力在数百万个大气压,迪亚斯团队报道的新材料所需压力要低得多。“结合我们在碳硫氢化物中发现的室温超导性表明,三种元素或更多元素的体系可能是实现更高转变温度和在室温条件下实现超导性的关键。”演讲中,迪亚斯表示,有了这些材料,接近环境压强超导和技术应用的黎明已经到来。同类研究刚被撤稿,这次是真的吗?这些年来,超导物理学界一直在尝试突破超导体的临界温度。但是,当问及业内人士,看到这一进展第一反应是什么时,他们并不是感慨成果本身,而是怀疑,“凭什么又是他们?”寻找室温超导非常困难,迪亚斯团队却一次次带来“惊喜”的成果,而且成果一次比一次更轰动。1986年,整个凝聚态物理领域发生了一次“大地震”,一种钡镧铜氧化物在30K,约-243℃左右的临界温度中被发现了超导现象,两名瑞士科学家因此获得了1987年诺贝尔物理学奖。之后,多国科学家们通过大量实验研究,对铜氧化物的超导电性有了更多认识,也掀起全球高温超导研究的热潮。1986年~1987年的短短一年多里,临界超导温度提高近100K。但是,科学家们至今仍没有找到一种真正的室温超导体。目前研究发现,提高超导体临界温度,最好的路径就是从高压着手。“在高压下寻找一个材料更高的临界温度,是一个比较成熟的研究体系了。每次去参加超导会议都有相关的报告。”朱佳敏说。解释超导性的标准理论早就预测,如果氢元素能被足够强力挤压形成金属氢,这种物质就极可能是室温超导体,但前提是要在百万级大气压的极端高压下合成。罗会仟告诉《中国新闻周刊》,如此高的压力,需要借助世界上最硬的物质——金刚石来实现,一对磨平端面的金刚石形成一种高压装置后,对氢加压。不过,氢本身十分活泼、易燃易爆,而且在高压下,渗入氢元素,会导致金刚石硬度突然降低而碎裂,发生“氢脆”现象,种种原因使得这一路径十分艰难。“(金属氢)大家前前后后找了80年,都一直没有成功。”罗会仟说。就在这个时候,2017年,当...PC版:https://www.cnbeta.com.tw/articles/soft/1349605.htm手机版:https://m.cnbeta.com.tw/view/1349605.htm

封面图片

能量守恒无损耗?韩国发现“室温超导”这次靠谱吗?

能量守恒无损耗?韩国发现“室温超导”这次靠谱吗?来自韩国的物理学家团队,近日在预印本网站arXiv上传了两篇论文,宣称发现了首个室温常压下的超导体。论文声称:在常压条件下,一种改性的铅磷灰石(文中称为LK-99)能够在127℃以下表现为超导体。论文一经公布,便在网络上引发了热烈讨论。arXiv上的论文截图 图片来源:参考资料[1]看到这条新闻的你,一定会产生这样的疑问:怎么又是室温超导?怎么又吵翻天了?以及,为什么有种似曾相识的感觉?太长不看版超导是材料在一定温度下电阻变为0的物理现象;超导体的应用有望为科技带来巨大变革,但苦于超导转变温度过低,应用受限;室温条件下的超导体是超导研究人员的终极梦想;此次引爆舆论的韩国论文尚未通过同行评议,对于论文宣称的结果需保持谨慎,还需进一步实验验证。超导是什么?物理上,超导(superconductivity)是材料在低于一定温度时电阻变为0的现象,转变后的材料称为超导体(superconductor)。中学课本里提到过,在一个电路中,导线里的电荷在电压驱动下会像跑步运动员一样运动,从而形成电流,但经过导体的电阻会阻碍它们的运动。如果电路由超导体组成,电荷就能在电路中自由自在地奔跑,电流会一直流动下去。在一个超导铅制成的环路中,可以连续几个月都观测不到电流有减弱的迹象。超导现象由昂内斯在1911年发现图片来源:诺贝尔奖官网除了电阻为0以外,超导体还有另一个奇特的性质,称为完全抗磁性。材料转变成超导体后,就好像武僧使出了金钟罩,体内的磁场会“排斥”掉几乎所有的磁通量,磁力线无法穿透超导体。这个现象也被称为迈斯纳效应。根据超导体的完全抗磁性,可以做个有趣的实验:在超导体的正下方放置一个磁体,磁体在周围产生磁场,而超导体的内部不允许磁场存在,从而产生相反磁场,与磁体互相排斥。如果排斥力和超导体的重力相平衡,就能让超导体悬浮在半空中,仿佛科幻小说中的场景。后来物理学家总结,要看一个材料是不是超导体,就看它是否同时具有零电阻现象和完全抗磁性的特性,两者缺一不可。因为自身特殊的性质,超导体引发了人们对它未来应用的无限遐想。比如:零电阻的电路几乎没有热损耗,使用超导体材料进行长距离大容量输电,能极大地减少能量浪费,提高能源利用效率;超导线运用于发电机、电动机能大幅提高电流强度和输出功率;超导体制作超大规模集成电路的连线,能解决散热问题,提高运算速度。超导体的现实应用,有可能为科学技术带来巨大而深刻的变革。可惜,理想很丰满,现实很骨感。直到目前为止,超导体的实际应用还主要集中在粒子加速器、磁悬浮、超导量子干涉仪等特定情境中。在电力工程方面,尤其是被寄予厚望的超导线长距离输电,大范围应用仍然遥遥无期。是什么限制了超导体的大范围应用?根本原因只有一个:温度。高温超导体材料转变为超导体的温度被称为超导临界温度(Tc),低于这个Tc,超导体才能保持自身的超导性质。然而,绝大多数材料的Tc都非常低,基本都在-220℃以下,需要借助液氮或液氦等维持低温环境。想象一下,辛辛苦苦建造一条几百公里的超导输电线,还需要全程浸泡在液氮中冷却,成本得多么夸张!所以为了让超导体得到更广泛的应用,必须要找到Tc更高、最好是室温条件下(大约25℃左右)也能保持超导性质的材料。从发现超导现象开始,物理学家对高Tc超导体的寻找从未停止,但一直举步维艰。在发现超导最开始的70多年内,Tc的上限连突破-240℃都很困难。还好后来物理学家陆续发现Tc超过-173℃的超导体,目前超导体最高临界温度的记录保持者是150万个大气压下的硫化氢,Tc大约是-73℃,离理想的室温还是有一定距离,如此高压的条件也意味着难以实际应用。韩国的“室温超导”看到这,如果你还记得开头的内容的话,就发现这个韩国团队发表的论文有多么惊世骇俗了——他们宣称发现了常压下Tc大约是127℃的超导体,不仅把Tc带到室温,更是一下子直接提高了200度!根据论文描述,他们把多种含铅、铜和磷的材料经过一定组合后分别混合加热,制备得到一种掺杂铜的铅-磷灰石晶体,并且称之为LK-99。论文提供的LK-99的照片 图片来源:参考资料[1]然后,他们测量了LK-99的物理性质。根据他们给出的实验结果,在127℃以下,给LK-99施加电流,在一定的电流范围内电压都基本为零,表现出了零电阻的特性。论文宣称,温度、电流和磁场达到一定临界值后,零电阻现象也随之消失,符合超导体的性质。在达到临界电流前,LK-99的电压趋于零,表现出零电阻 图片来源:参考资料[1]除了零电阻以外,超导体的另外一个重要特性是完全抗磁性。对此,团队提供了实验数据图,还在网上发表了视频演示。视频中,在室温常压的环境下,一小片LK-99样品放在一块磁铁上,一端贴近磁铁,另一端自发抬升,仿佛受到了某种排斥力。不过,视频里的抬升并不像很多超导体的迈斯纳效应那样,完全悬浮在磁铁上。事实上,部分强抗磁性的材料,比如铁磁粉末压块,在强磁场下也会和磁体排斥,出现视频中类似的抬升效果。因此,单凭这段视频,并不能证明LK-99拥有超导体那样的完全抗磁性。但论文团队认为,他们的一系列实验验证了LK-99在室温常压下是超导体。他们还作出了理论解释,认为铅磷灰石的部分铅离子被铜离子替代后,体积微小地收缩导致材料结构变形,进而在内部的交界面上产生了超导量子阱,从而产生了超导现象。论文尝试从结构上解释LK-99室温超导的原理图片来源:参考资料[2]不过,LK-99的结构与之前发现的主流高温超导体有显著不同,他们给出的理论解释暂时还只是一种猜测。狼来了的故事你会对室温超导有“似曾相识”相识的感觉,可能是因为就在今年3月,曾经有另一个和室温超导相关的“重磅炸弹”,在公众之中掀起了不小的波澜。当时,在美国物理学会会议上,美国罗切斯特大学的物理学家兰加·迪亚斯(RangaDias)及其团队宣称,他们在1GPa(约等于1万个大气压)的压强下,在镥-氮-氢体系中材料中实现了室温(约21℃)超导。罗切斯特大学的兰加·迪亚斯图片来源:罗切斯特大学然而,在迪亚斯发布研究仅仅一周后,多个实验团队就发表论文声明,在针对镥化氢化合物的重复实验中没有发现超导现象。尽管迪亚斯坚持声称自己的实验结果真实可信,但他在《自然》和《物理评论快报》(PhysicsReviewLetters)上发表的文章接连因造假嫌疑被撤稿,他提出的室温超导材料也被认为证据不足而受到了广泛质疑。镥-氢-氮材料的电阻随温度的变化曲线,温度低至2K都没有发现超导转变 图片来源:参考资料[3]与今年3月迪亚斯的“发现”相比,这次韩国团队论文中的常压下127℃的超导还要更加令人震惊。那么,韩国团队的“实验结果”,会不会和迪亚斯宣称发现室温超导一样,最后变成争议不断的学术闹剧呢?值得一提的是,上次迪亚斯的论文一开始是发表在《自然》上,虽然当时还没有实验复现,但至少经过了一定的同行评议;而这次韩国团队的论文发表在预印本网站arXiv上,完全没有同行评议的过程。arXiv发布论文的门槛很低,通常是研究人员在自己论文正式发表之前,先在arXiv上传预稿证明原创性,论文往往是鱼龙混杂,质量难以得到保证。其实不仅是迪亚斯,几乎每年都有团队声称发现了室温超导的材料,可至今...PC版:https://www.cnbeta.com.tw/articles/soft/1373465.htm手机版:https://m.cnbeta.com.tw/view/1373465.htm

封面图片

研究室温超导体的物理学家被指控"研究行为不当"

研究室温超导体的物理学家被指控"研究行为不当"据《华尔街日报》报道,一项调查发现,声称研制出首批室温超导体之一的物理学家存在"研究不当行为"。兰加-迪亚斯(RangaDias)是罗切斯特大学的一名研究员和助理教授,自去年8月以来,他一直在接受一个外部专家委员会的调查,因为人们担心他的研究结果是否准确。罗切斯特大学发言人萨拉-米勒(SaraMiller)在一份声明中说:"罗切斯特大学已经完成了由校外科学家组成的小组进行的彻底调查。委员会根据大学政策和联邦法规得出结论,迪亚斯存在研究不当行为。"去年,迪亚斯与他人合作在《自然》杂志上发表了一篇研究论文,重点介绍了一种掺氮的氢化镥。该论文声称,这种材料可以在常温下无电阻导电。(如果这听起来很熟悉,那是因为你想到了去年在社交媒体上疯传的所谓LK-99超导体),科学家们后来发现迪亚斯的研究前后矛盾。这篇论文以及迪亚斯的其他一些研究成果已被撤回。米勒说,委员会"在这些论文中发现了数据可靠性问题,而罗切斯特大学致力于学术诚信"。在最近的调查之前,校方对迪亚斯的研究进行了两次调查,但决定不展开全面调查。正如《华尔街日报》所指出的,校方下一步还可能决定对迪亚斯采取人事行动,这将由教务长处理。...PC版:https://www.cnbeta.com.tw/articles/soft/1424436.htm手机版:https://m.cnbeta.com.tw/view/1424436.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人